Subscribe to RSS
DOI: 10.1055/a-2511-4274
Synthesis of Trifluoromethyl-Substituted Cyclopentanes through Boron-Radical-Catalyzed Cycloaddition Reaction of Trifluoromethyl-Substituted Alkenes
Financial support was provided by the National Natural Science Foundation of China (No. 22301237), the Natural Science Basic Research Program of Shaanxi Province (No. 2020JC-08), and the Fundamental Research Funds for the Central Universities (Nos. xtr072022003, xzy012022118).

Abstract
A highly efficient protocol for the synthesis of trifluoromethyl-substituted cyclopentanes, a structural motif ubiquitous in bioactive compounds and natural products, via boron-radical-catalyzed (3+2) cycloaddition of aroylcyclopropanes and trifluoromethyl-substituted alkenes was developed. Employing readily available precursors, this modular, atom-economical, metal-free, and operationally simple process was compatible with diverse functional groups, giving the products in generally good to high yields. Trifluoromethyl-substituted bicyclo[2.1.1]hexanes (BCHs) were analogously prepared.
Key words
cycloaddition - trifluoromethyl-substituted alkenes - boron radicals - catalysis - cyclopentanesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2511-4274.
- Supporting Information
- CIF File
Publication History
Received: 29 November 2024
Accepted after revision: 07 January 2025
Accepted Manuscript online:
07 January 2025
Article published online:
14 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
- 1c Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 2a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2b Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
- 3 Xu P, Zhu L, Zhang D, Li Z, Ge R, Tian Q. Results Chem. 2024; 7: 101446
- 4 Ali S, Bolinger AA, Zhou J. Curr. Top. Med. Chem. 2024; 24: 843
- 5 Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 6a Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 6b Studer A. Angew. Chem. Int. Ed. 2012; 124: 9082
- 6c Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 6d Zhang C. ACS Omega 2022; 7: 18206
- 6e Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 7a Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 7b Umemoto T. Chem. Rev. 1996; 96: 1757
- 7c Nie J, Guo HC, Cahard D, Ma JA. Chem. Rev. 2011; 111: 455
- 7d Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 7e Alonso C, Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 8a Mccall JM, Hoffman E, Nagaraju K. WO Patent 2011127048, 2011
- 8b Li M, Zhou W. Chem. Commun. 2020; 56: 8842
- 8c Jay S. WO Patent 2021195301, 2021
- 8d Butora G, Goble SD, Pasternak A, Yang L, Zhou C, Moyes CR. US Patent 7598243, 2009
- 8e Iakovenko RO, Kazakova AN, Muzalevskiy VM, Ivanov AY, Boyarskaya IA, Chicca A, Petrucci V, Gertsch J, Krasavin M, Starova GL, Zolotarev AA, Avdontceva MS, Nenajdenko VG, Vasilyev AV. Org. Biomol. Chem. 2015; 13: 8827
- 8f Bichler PR, Chowdhury S, Decker SM, Dehnhardt CM, Focken T, Grimwood ME, Hemeon IW, Safina B, Sheng T, Sun S, Wilson MS, Zenova AY. WO Patent 2014153037, 2014
- 9 Choi G, Lee GS, Park B, Kim D, Hong SH. Angew. Chem. Int. Ed. 2021; 60: 5467
- 10 He JC, Nguyen TN, Guo S, Cook SP. Org. Lett. 2021; 23: 702
- 11 Kornfilt DJ. P, MacMillan DW. C. J. Am. Chem. Soc. 2019; 141: 6853
- 12 Intermaggio NE, Millet A, Davis DL, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 11961
- 13 Dmowski W, Wolniewicz A. J. Fluorine Chem. 2000; 102: 141
- 14 Cong F, Mega RS, Chen JH, Day CS, Martin R. Angew. Chem. Int. Ed. 2023; 62: e202214633
- 15 Trost BM, Debien L. J. Am. Chem. Soc. 2015; 137: 11606
- 16a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 16b Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
- 16c Zhan M, Song P, Jiao J, Li P. Chin. J. Chem. 2020; 38: 665
- 16d Xu L, Zhang S, Li P. Chem. Soc. Rev. 2015; 44: 8848
- 16e Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
- 17a Ding Z, Liu Z, Wang Z, Yu T, Xu M, Wen J, Yang K, Zhang H, Xu L, Li P. J. Am. Chem. Soc. 2022; 144: 8870
- 17b Xu M, Wang Z, Sun Z, Ouyang Y, Ding Z, Yu T, Xu L, Li P. Angew. Chem. Int. Ed. 2022; 61: e202214507
- 18a Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. J. Am. Chem. Soc. 2023; 145: 4304
- 18b Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Angew. Chem. Int. Ed. 2025; 64: e202420831
- 19a Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang HL, Xu L, Li P. Angew. Chem. Int. Ed. 2024; 63: e202406612
- 19b Wen J, Ding Z, Li P. Org. Lett. 2024; 26: 7021
- 19c Li T, Wei L, Wang Z, Zhang X, Yang J, Wei Y, Li P, Xu L. Org. Lett. 2024; 26: 5341
- 20a Liu Y, Lin S, Li Y, Xue J.-H, Li Q, Wang H. ACS Catal. 2023; 13: 5096
- 20b Liu Y, Lin S, Ding Z, Li Y, Tang Y.-J, Xue J.-H, Li Q, Li P, Wang H. Chem 2024; 10: 3699
- 21 Huang H, An X.-D, Wang Y.-F, Tan Y.-X, Tian P. Adv. Synth. Catal. 2025; 367: e202401015
- 22a Wang J, Phang YL, Yu Y.-J, Liu N.-N, Xie Q, Zhang F.-L, Jin J.-K, Wang Y.-F. Angew. Chem. Int. Ed. 2024; 63: e202405863
- 22b Phang YL, Zhang F.-L, Jin J.-K, Wang Y.-F. ARKIVOC 2024; (ii): 202312052
- 22c Wang C.-L, Wang J, Jin J.-K, Li B, Phang YL, Zhang F.-L, Ye T, Xia H.-M, Hui L.-W, Su J.-H, Fu Y, Wang Y.-F. Science 2023; 382: 1056
- 22d Xu A.-Q, Zhang F.-L, Ye T, Yu Z.-X, Wang Y.-F. CCS Chem. 2019; 1: 504
- 23a Tian FT, Yan GB, Yu J. Chem. Commun. 2019; 55: 13486
- 23b Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
- 23c Li L, Xiao T, Chen H, Zhou L. Chem. Eur. J. 2017; 23: 2249
- 23d Chen H, Xiao T, Li L, Anand D, He Y, Zhou L. Adv. Synth. Catal. 2017; 359: 3642
- 23e Tian H, Shimakoshi H, Imamura K, Shiota Y, Yoshizawa K, Hisaeda Y. Chem. Commun. 2017; 53: 9478
- 23f Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
- 23g Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
- 23h Lu X, Wang X.-X, Gong TJ, Pi JJ, He SJ. Fu Y. Chem. Sci. 2019; 10: 809
- 23i Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
- 23j He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
- 23k Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
- 23l Wu LH, Cheng JK, Shen L, Shen ZL, Loh TP. Adv. Synth. Catal. 2018; 360: 3894
- 23m Wiles RJ, Phelan JP, Molander GA. Chem. Commun. 2019; 55: 7599
- 24a Amador AG, Sherbrook EM, Lu Z, Yoon TP. Synthesis 2018; 50: 539
- 24b Huang X, Lin J, Shen T, Harms K, Marchini M, Ceroni P, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 5454
- 24c Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. J. Am. Chem. Soc. 2018; 140: 3514
- 24d Robinson SG, Wu X, Jiang B, Sigman MS, Lin S. J. Am. Chem. Soc. 2020; 142: 18471
- 24e Agasti S, Beattie NA, McDouall JJ. W, Procter DJ. J. Am. Chem. Soc. 2021; 143: 3655
- 25a Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Nature 2022; 605: 477
- 25b Guo R, Chang YC, Herter L, Salome C, Braley SE, Fessard TC, Brown MK. J. Am. Chem. Soc. 2022; 144: 7988
- 25c Agasti S, Beltran F, Pye E, Kaltsoyannis N, Crisenza GE. M, Procter DJ. Nat. Chem. 2023; 15: 535
- 25d Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Angew. Chem. Int. Ed. 2022; 61: e202204719
- 25e Tang L, Xiao YJ, Wu F, Zhou JL, Xu TT, Feng JJ. Angew. Chem. Int. Ed. 2023; 62: e202310066
- 25f Zhou JL, Xiao YJ, He L, Gao XY, Yang XY, Wu WB, Wang GQ, Zhang JL, Feng JJ. J. Am. Chem. Soc. 2024; 146: 19621
- 25g Wu F, Wu WB, Xiao YJ, Li ZX, Tang L, He HX, Yang XC, Wang JJ, Cai YL, Xu TT, Tao JH, Wang GQ, Feng JJ. Angew. Chem. Int. Ed. 2024; 63: e202406548
- 25h Sujansky SJ, Ma XS. Asian J. Org. Chem. 2024; 13: e202400045
- 25i Golfmann M, Walker JC. L. Commun. Chem. 2023; 6: 9
- 26 Qin T, Xu CL, Zhang G, Zhang Q. Org. Chem. Front. 2023; 10: 1981
- 27 Ren RG, Wu Z, Zhu C. Chem. Commun. 2016; 52: 8160
- 28 Pitts MR, Harrison JR, Moody CJ. J. Chem. Soc., Perkin Trans. 1 2001; 955
For more boron-centered radical catalysis, see: