RSS-Feed abonnieren
DOI: 10.1055/a-2505-2699
Reductive Ring Opening of Cyclic Amines: Pyrrolidines and Beyond
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Numbers JP21H05213 (Digi-TOS) to J.Y., JP23K13752 to E.O.), the Uehara Memorial Foundation (to E.O.), and the Satomi Foundation (to E.O.). This work was partly supported by the Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO, Grant Number JPMJER1901 to J.Y.).

Abstract
The reductive ring opening of cyclic amines is a powerful strategy for transforming cyclic structures into entirely different molecular frameworks, with significant potential application in synthetic and medicinal chemistry. Previously reported methods have been primarily limited to highly strained substrates such as aziridines and azetidines. In this study, we report a novel approach for generating carbon-centered radicals upon ring opening from less strained cyclic amines, particularly pyrrolidines, using Lewis acid and photoredox catalysis. Notably, while still in its early stages, this method shows potential applicability to larger rings, such as six- and seven-membered systems. Here, we detail the development, scope, and potential of this method, demonstrating efficient and selective reactions of a range of cyclic amines.
1 Introduction
2 Recent Examples of Reductive Ring Opening of Pyrrolidines
3 Our Working Hypothesis and Ring Opening of Pyrrolidines
4 Conclusion
Publikationsverlauf
Eingereicht: 27. November 2024
Angenommen nach Revision: 17. Dezember 2024
Accepted Manuscript online:
17. Dezember 2024
Artikel online veröffentlicht:
09. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2 Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Nature 2018; 564: 244
- 3 Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2021; 593: 223
- 4 Jurczyk J, Lux MC, Adpressa D, Kim SF, Lam YH, Yeung CS, Sarpong R. Science 2021; 373: 1004
- 5 Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Science 2018; 361: 171
- 6 Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2021; 143: 3889
- 7 Kaledin AL, Roque JB, Sarpong R, Musaev DG. Top. Catal. 2022; 65: 418
- 8 Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat. Synth. 2022; 1: 352
- 9 Shi S, Szostak R, Szostak M. Org. Biomol. Chem. 2016; 14: 9151
- 10 Han G, McIntosh MC, Weinreb SM. Tetrahedron Lett. 1994; 35: 5813
- 11 Boto A, Hernández R, Suárez E. J. Org. Chem. 2000; 65: 4930
- 12 Cocquet G, Ferroud C, Guy A. Tetrahedron 2000; 56: 2975
- 13 Ito R, Umezawa N, Higuchi T. J. Am. Chem. Soc. 2005; 127: 834
- 14 Kaname M, Yoshifuji S, Sashida H. Tetrahedron Lett. 2008; 49: 2786
- 15 Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
- 16 Wang H, Man Y, Wang K, Wan X, Tong L, Li N, Tang B. Chem. Commun. 2018; 54: 10989
- 17 Liu RH, He YH, Yu W, Zhou B, Han B. Org. Lett. 2019; 21: 4590
- 18 Elderfield RC, Hageman HA. J. Org. Chem. 1949; 14: 605
- 19 Elderfield RC, Green M. J. Org. Chem. 1952; 17: 431
- 20 Yu C, Shoaib MA, Iqbal N, Kim JS, Ha HJ, Cho EJ. J. Org. Chem. 2017; 82: 6615
- 21 Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
- 22 Su J, Ma X, Ou Z, Song Q. ACS Cent. Sci. 2020; 6: 1819
- 23 Seong S, Lim H, Han S. Chem 2019; 5: 353
- 24 Lim H, Seong S, Kim Y, Seo S, Han S. J. Am. Chem. Soc. 2021; 143: 19966
- 25 Zhang J, Chang S. J. Am. Chem. Soc. 2020; 142: 12585
- 26 Peng Y, Oestreich M. Chem. Eur. J. 2022; 29: e202203721
- 27 Fu Y, Liu L, Yu HZ, Wang YM, Guo QX. J. Am. Chem. Soc. 2005; 127: 7227
- 28 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 29 Szostak M, Spain M, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 7237
- 30 Morss LR. Chem. Rev. 1976; 76: 827
- 31 Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 32 Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
- 33 Chen L, Qu Q, Ran CK, Wang W, Zhang W, He Y, Liao LL, Ye JH, Yu DG. Angew. Chem. Int. Ed. 2023; 62: e202217918
- 34 Aida K, Hirao M, Funabashi A, Sugimura N, Ota E, Yamaguchi J. Chem 2022; 8: 1762
- 35 Aida K, Ota E, Yamaguchi J. Synlett 2024; 35: 451
- 36 Okita T, Aida K, Tanaka K, Ota E, Yamaguchi J. Precis. Chem. 2023; 1: 112
- 37 Ota E, Aida K, Yamaguchi J. Chem. Lett. 2024; 53: upae095
- 38 Tajima R, Tanaka K, Aida K, Ota E, Yamaguchi J. Precis. Chem. 2024; in press; DOI
- 39 Zhang Y.-Q, Vogelsang E, Qu Z.-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
- 40 Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
- 41 Wood DP, Guan W, Lin S. Synthesis 2021; 53: 4213
- 42 Williams WL, Gutiérrez-Valencia NE, Doyle AG. J. Am. Chem. Soc. 2023; 145: 24175
- 43 Yao C, Williams AD. N, Gu Y, Norton JR. J. Org. Chem. 2022; 87: 4991
- 44 Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. J. Am. Chem. Soc. 2024; 146: 30698