Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(07): 899-903
DOI: 10.1055/a-2456-9961
DOI: 10.1055/a-2456-9961
letter
Metal-Free Selective Air-Oxidation of Sulfides to Sulfoxides Using 2,2′-Azobis-(2,4-dimethyl-4-methoxyvaleronitrile) (V-70) and Isobutyraldehyde
This work was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan (Grant Number 22K05469) and The Meijo Research Promotion Organization for Carbon Neutrality.

Abstract
Selective oxidation of sulfides to sulfoxides using ‘air’ was achieved using a combination of 2,2′-azobis-(2,4-dimethyl-4-methoxyvaleronitrile) (a radical initiator) and isobutyraldehyde (a co-oxidant). Various sulfides were successfully converted into their corresponding sulfoxides using this method. This approach promotes a sustainable oxidation process by excluding harmful oxidants, such as peroxides and metal reagents.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2456-9961.
- Supporting Information
Publication History
Received: 10 October 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
15 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chen X, Li Z, Sun X, Ma H, Chen X, Ren J, Hu K. Synthesis 2011; 3991
- 1b Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 1c Surur AS, Schulig L, Link A. Arch. Pharm. (Weinheim) 2019; 352: e1800248
- 1d Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH. Phosphorus, Sulfur Silicon Relat. Elem. 2020; 195: 181
- 2 Mukaiyama T, Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17
- 3a Uchida T, Katsuki T. J. Synth. Org. Chem., Jpn. 2013; 71: 1126
- 3b Casado-Sanchez A, Gomez-Ballesteros R, Tato F, Soriano FJ, Pascual-Coca G, Cabrera S, Aleman J. Chem. Commun. 2016; 52: 9137
- 4a Skolia E, Gkizis PL, Kokotos CG. ChemPlusChem 2022; 87: e202200008
- 4b Spyropoulou CK, Skolia E, Flesariu DF, Zissimou GA, Gkizis PL, Triandafillidi I, Athanasiou M, Itskos G, Koutentis PA, Kokotos CG. Adv. Synth. Catal. 2023; 365: 2643
- 5a Gu X, Li X, Chai Y, Yang Q, Li P, Yao Y. Green Chem. 2013; 15: 357
- 5b Zhang H, Wang G. Tetrahedron Lett. 2014; 55: 56
- 6a McNesby JR, Heller CA. Jr. Chem. Rev. 1954; 54: 325
- 6b Imamura J, Wakasa R, Kataoka K, Kubota K, Yamaguchi S, Saito T. Bull. Jpn. Pet. Inst. 1971; 13: 273
- 6c Chauhan J, Ravva MK, Sen S. Org. Lett. 2019; 21: 6562
- 7a Nagata T, Imagawa K, Yamada T, Mukaiyama T. Bull. Chem. Soc. Jpn. 1995; 68: 3241
- 7b Dell’Anna MM, Mastrorilli P, Nobile CF. J. Mol. Catal. A: Chem. 1996; 108: 57
- 7c Zhou X.-T, Ji H.-B, Cheng Z, Xu J.-C, Pei L.-X, Wang L.-F. Bioorg. Med. Chem. Lett. 2007; 17: 4650
- 7d Zhang P, Wang Y, Li H, Antonietti M. Green Chem. 2012; 14: 1904
- 8 Wang L, Zhang Y, Yao J, Li H. Catal. Lett. 2022; 152: 1131
- 9a Kita Y, Sano A, Yamaguchi T, Oka M, Gotanda K, Matsugi M. Tetrahedron Lett. 1997; 38: 3549
- 9b Kita Y, Gotanda K, Murata K, Suemura M, Sano A, Yamaguchi T, Oka M, Matsugi M. Org. Process Res. Dev. 1998; 2: 250
- 10 Matsugi M, Gotanda K, Ohira C, Suemura M, Sano A, Kita Y. J. Org. Chem. 1999; 64: 6928
- 11 Kato Y, Kanoh M, Kobayashi H, Shioiri T, Matsugi M. Molecules 2024; 29: 966
- 12 A subsequent experiment revealed that the air balloon was not essential in this oxidation reaction. Selective oxidation of sulfide to sulfoxide could be achieved under open-air conditions by modifying the system to prevent solvent volatilization, specifically by capping the vessel with a perforated septum (which is not shown in Table 2). The reaction conditions: 24 hours; conversion 96%, with a product ratio of 2a/3a = 98:2.
- 13 Köckritz A, Blumenstein M, Martin A. Eur. J. Lipid Sci. Technol. 2008; 110: 581
- 14 General Procedure: Under air atmosphere, V-70 (12.3 mg, 0.04 mmol, 20 mol%) was added to a suspension of sulfide (0.2 mmol, 1.0 equiv) and isobutyraldehyde (18.3 µL, 0.2 mmol, 1.0 equiv) in EtOAc (2 mL) and the mixture was stirred at room temperature. Upon completion, the reaction mixture was diluted with EtOAc and washed with sat. NaHCO3 aq. and brine. The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The conversion was determined by 1H NMR analysis of the crude product.
- 15 Analytical data for sulfoxides are provided in the Supporting Information.
For selected examples, see:
For selected examples, see: