RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2024; 56(24): 3903-3914
DOI: 10.1055/a-2443-5060
DOI: 10.1055/a-2443-5060
paper
Rare-Earth-Metal-Catalyzed Regioselective Hydrosilylation of Internal Alkenes and Alkynes
We are grateful for the financial support from National Key R&D Program of China (2022YFA1504301), the National Natural Science Foundation of China (22271199, 92256303), and Sichuan Science and Technology Program (No. 2023YFSY0063). We thank the New Energy and Industrial Technology Development Organization (NEDO) for partially supporting this research.

Abstract
A highly regioselective hydrosilylation reaction of internal alkenes was achieved by using commercially available lanthanum hexamethyldisilazane (La(HMDS)3). Notably, the Z- or E-configuration of internal alkenes has negligible influence on either the reactivity or regioselectivity. Internal alkynes could also be used, affording the mono di-hydrosilylation product in the presence of La(HMDS)3 or mono-hydrosilylation product with Y(HMDS)3 as the promoter.
Key words
hydrosilylation - internal alkenes - internal alkynes - rare-earth metals - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2443-5060.
- Supporting Information
Publikationsverlauf
Eingereicht: 08. August 2024
Angenommen nach Revision: 16. Oktober 2024
Accepted Manuscript online:
16. Oktober 2024
Artikel online veröffentlicht:
11. November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
- 1b Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
- 2a Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
- 2b Sun J, Deng L. ACS Catal. 2016; 6: 290
- 2c Du XY, Huang Z. ACS Catal. 2017; 7: 1227
- 2d Chen JH, Lu Z. Org. Chem. Front. 2018; 5: 260
- 2e Almeida LD. D, Wang HL, Junge K, Cui XJ, Beller M. Angew. Chem. Int. Ed. 2021; 60: 550
- 2f Zhu S.-F, He P, Hu M.-Y, Zhang X.-Y. Synthesis 2021; 54: 49
- 3a Gao L, Zhang Y, Song Z. Synlett 2013; 24: 139
- 3b Williams DR, Morales-Ramos AI, Williams CM. Org. Lett. 2006; 8: 4393
- 3c Yin Z, Liu Z, Huang Z, Chu Y, Chu Z, Hu J, Gao L, Song Z. Org. Lett. 2015; 17: 1553
- 3d Liu Z, Lin X, Yang N, Su Z, Hu C, Xiao P, He Y, Song Z. J. Am. Chem. Soc. 2016; 138: 1877
- 3e Schnepf A, Köppe R, Schnöckel H. Angew. Chem. Int. Ed. 2001; 40: 1241
- 4a Zaranek M, Pawluc P. ACS Catal. 2018; 8: 9865
- 4b Hossain I, Schmidt JA. R. Organometallics 2020; 39: 3441
- 5a Molander GA, Romero JA. C. Chem. Rev. 2002; 102: 2161
- 5b Horino Y, Livinghouse T. Organometallics 2004; 23: 12
- 5c Liu DS, Liu BY, Pan ZX, Li JF, Cui CM. Sci. China: Chem. 2019; 62: 571
- 6 Hu MY, He Q, Fan SJ, Wang ZC, Liu LY, Mu YJ, Peng Q, Zhu SF. Nat. Commun. 2018; 9: 221
- 7 Liu JX, Chen WF, Li JF, Cui CM. ACS Catal. 2018; 8: 2230
- 8a Hou Z, Wakatsuki Y. Product Class 12: Organometallic Complexes of Scandium, Yttrium and the Lanthanides. Imamoto T, Noyori R. Thieme; Stuttgart: 2002: 849
- 8b Inanaga J, Furuno H, Hayano T. Chem. Rev. 2002; 102: 2211
- 8c Nishiura M, Guo F, Hou ZM. Acc. Chem. Res. 2015; 48: 2209
- 8d Mao WQ, Xiang L, Chen YF. Coord. Chem. Rev. 2017; 346: 77
- 9a Li DW, Ning LC, Luo QL, Wang SY, Feng XM, Dong SX. Sci. China: Chem. 2023; 66: 1804
- 9b Wang SY, Zhu CH, Ning LC, Li DW, Feng XM, Dong SX. Chem. Sci. 2023; 14: 3132
- 9c Zhu CH, Zhou YQ, Yang J, Feng XM, Dong SX. Org. Chem. Front. 2023; 10: 1263
- 9d Wang SJ, Zhang CF, Li D, Zhou YQ, Su ZS, Feng XM, Dong SX. Sci. China: Chem. 2023; 66: 147
- 9e Zhu CH, Zhou YQ, Zhang J, Li JF, Zhang YX, Wang F, Feng XM, Dong SX. CCS Chem. 2024; accepted
- 10 Chen WF, Song HB, Li JF, Cui CM. Angew. Chem. Int. Ed. 2020; 59: 2365
- 11a Molander GA, Retsch WH. Organometallics 1995; 14: 4570
- 11b Chaulagain MR, Mahandru GM, Montgomery J. Tetrahedron 2006; 62: 7560
- 11c Kawasaki Y, Ishikawa Y, Igawa K, Tomooka K. J. Am. Chem. Soc. 2011; 133: 20712
- 11d Belger C, Plietker B. Chem. Commun. 2012; 48: 5419
- 11e Ding ST, Song L.-J, Chung LW, Zhang XH, Sun JW, Wu Y.-D. J. Am. Chem. Soc. 2013; 135: 13835
- 11f Mo ZB, Xiao J, Gao YF, Deng L. J. Am. Chem. Soc. 2014; 136: 17414
- 11g Wen HN, Wan XL, Huang Z. Angew. Chem. Int. Ed. 2018; 57: 6319
- 11h Yang XX, Wang CY. Angew. Chem. Int. Ed. 2018; 57: 923
- 11i Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
- 11j Liu XH, Wen QW, Xiang L, Leng XB, Chen YF. Chem. Eur. J. 2020; 26: 5494
- 11k Hu M.-Y, He P, Qiao T.-Z, Sun W, Li W.-T, Lian J, Li J.-H, Zhu S.-F. J. Am. Chem. Soc. 2020; 142: 16894
- 11l Xu XM, Gao A, Chen WF, Xu XF, Li JF, Cui CM. ACS Catal. 2023; 13: 3743
- 12a Teng H.-L, Luo Y, Nishiura M, Hou ZM. J. Am. Chem. Soc. 2017; 139: 16506
- 12b Luo Y, Ma YH, Hou ZM. J. Am. Chem. Soc. 2018; 140: 114
- 12c Tan F, Pu MP, He J, Li JZ, Yang J, Dong SX, Liu XH, Wu Y.-D, Feng XM. J. Am. Chem. Soc. 2021; 143: 2394
- 12d Dong SX, Liu XH, Feng XM. Acc. Chem. Res. 2022; 55: 415
- 12e Lin QC, Zheng SJ, Chen L, Wu J, Li JZ, Liu PZ, Dong SX, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2022; 61: e202203650
- 12f Xu JX, Song YJ, Yang J, Yang BQ, Su ZS, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2023; 62: e202217887
- 13 Zhang S, Liao JS, Unruh DK, Li GG, Findlater M. Org. Chem. Front. 2021; 8: 2174
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For selected books and reviews, see:
For selected examples, see:
For selected examples, see: