RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000093.xml
Ernährung & Medizin 2025; 40(02): 85-90
DOI: 10.1055/a-2439-5831
DOI: 10.1055/a-2439-5831
Wissen
Leaky Gut – ernährungsassoziierte Störung der intestinalen Barriere

Leaky Gut (LG) ist eine Bezeichnung für Beeinträchtigungen der intestinalen Barriere. Diagnostische Ansätze sind bisher kaum evaluiert. Unklar ist auch, ob Barrierestörungen Ursache oder Begleiterscheinung von Erkrankungen sind. Evidenzbasierte Empfehlungen zu Prävention oder Therapie ableiten zu können, ist derzeit nicht möglich und erfordert eine stärkere Forschung zur Ätiologie und gesundheitlichen Bedeutung des LG.
Publikationsverlauf
Artikel online veröffentlicht:
07. April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1
Camilleri M.
What is the leaky gut? Clinical considerations in humans. Curr Opin Clin Nutr Metab
Care 2021; 24: 473-482
MissingFormLabel
- 2
Aleman RS,
Moncada M,
Aryana KJ.
Leaky gut and the ingredients that help treat it: A review. Molecules 2023; 28: 619
MissingFormLabel
- 3
Camilleri M.
Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019;
68: 1516-1526
MissingFormLabel
- 4
Kobayashi N,
Takahashi D,
Takano S.
et al.
The roles of Peyer’s patches and microfold cells in the gut immune system:
Relevance to Autoimmune Diseases. Front Immunol 2019; 10: 2345
MissingFormLabel
- 5
Heinemann U,
Schuetz A.
Structural features of tight-junction proteins. Int J Mol Sci 2019; 20: 6020
MissingFormLabel
- 6
Bauer H,
Zweimueller-Mayer J,
Steinbacher P.
et al.
The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010; 2010: 402593
MissingFormLabel
- 7
Findley MK,
Koval M.
Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009;
61: 431-437
MissingFormLabel
- 8
Pelaseyed T,
Bergström JH,
Gustafsson JK.
et al.
The mucus and mucins of the goblet cells and enterocytes provide the first
defense line of the gastrointestinal tract and interact with the immune
system. Immunol Rev 2014; 260: 8-20
MissingFormLabel
- 9
Hansson GC.
Mucins and the microbiome. Annu Rev Biochem 2020; 89: 769-793
MissingFormLabel
- 10
Luis AS,
Hansson GC.
Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe
2023; 31: 1087-1100
MissingFormLabel
- 11
Song C,
Chai Z,
Chen S.
et al.
Intestinal mucus components and secretion mechanisms: What we do and do not
know. Exp Mol Med 2023; 55: 681-691
MissingFormLabel
- 12
Tropini C,
Earle KA,
Huang KC,
Sonnenburg JL.
The gut microbiome: Connecting spatial organization to function. Cell Host Microbe
2017; 21: 433-442
MissingFormLabel
- 13
Ghosh S,
Whitley CS,
Haribabu B,
Jala VR.
Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol
Hepatol 2021; 11: 1463-1482
MissingFormLabel
- 14
Mörbe UM,
Jørgensen PB,
Fenton TM.
et al.
Human gut-associated lymphoid tissues (GALT); diversity, structure, and
function. Mucosal Immunol 2021; 14: 793-802
MissingFormLabel
- 15
Mowat AM,
Agace WW.
Regional specialization within the intestinal immune system. Nat Rev Immunol 2014;
14: 667-685
MissingFormLabel
- 16
Bamias G,
Kitsou K,
Rivera-Nieves J.
The underappreciated role of secretory IgA in IBD. Inflamm Bowel Dis 2023; 29: 1327-1341
MissingFormLabel
- 17
Padoan A,
Musso G,
Contran N,
Basso D.
Inflammation, autoinflammation and autoimmunityin inflammatory bowel
diseases. Curr Issues Mol Biol 2023; 45: 5534-5557
MissingFormLabel
- 18
Mu Q,
Kirby J,
Reilly CM,
Luo XM.
Leaky gut as a danger signal for autoimmune diseases. Front Immunol 2017; 8: 598
MissingFormLabel
- 19
Vanuytsel T,
Tack J,
Farre R.
The role of intestinal permeability in gastrointestinal disorders and current
methods of evaluation. Front Nutr 2021; 8: 717925
MissingFormLabel
- 20
Khoshbin K,
Camilleri M.
Effects of dietary components on intestinal permeability in health and
disease. Am J Physiol-Gastrointest Liver Physiol 2020; 319: G589-G608
MissingFormLabel
- 21
Binienda A,
Twardowska A,
Makaro A,
Salaga M.
Dietary carbohydrates and lipids in the pathogenesis of leaky gut syndrome: An
overview. Int J Mol Sci 2020; 21: 8368
MissingFormLabel
- 22
Lerner A,
Matthias T.
Changes in intestinal tight junction permeability associated with industrial
food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015;
14: 479-489
MissingFormLabel
- 23
Camilleri M.
Human intestinal barrier: Effects of stressors, diet, prebiotics, and
probiotics. Clin Transl Gastroenterol 2021; 12: e00308
MissingFormLabel
- 24
Summa KC,
Voigt RM,
Forsyth CB.
et al.
Disruption of the circadian clock in mice increases intestinal permeability and
promotes alcohol-induced hepatic pathology and inflammation. PLoS One 2013; 8: e67102
MissingFormLabel
- 25
Moonwiriyakit A,
Pathomthongtaweechai N,
Steinhagen PR.
et al.
Tight junctions: From molecules to gastrointestinal diseases. Tissue Barriers 2023;
11: 2077620
MissingFormLabel
- 26
Di Tommaso N,
Gasbarrini A,
Ponziani FR.
Intestinal barrier in human health and disease. Int J Environ Res Public Health 2021;
18: 12836
MissingFormLabel
- 27
Paone P,
Cani PD.
Mucus barrier, mucins and gut microbiota: The expected slimy partners?. Gut 2020;
69: 2232-2243
MissingFormLabel
- 28
Etienne-Mesmin L,
Chassaing B,
Desvaux M.
et al.
Experimental models to study intestinal microbes-mucus interactions in health
and disease. FEMS Microbiol Rev 2019; 43: 457-489
MissingFormLabel
- 29
Christovich A,
Luo XM.
Gut microbiota, leaky gut, and autoimmune diseases. Front Immunol 2022; 13: 946248
MissingFormLabel
- 30
Zegarra-Ruiz DF,
El Beidaq A,
Iñiguez AJ.
et al.
A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic
autoimmunity. Cell Host Microbe 2019; 25: 113-127.e6
MissingFormLabel
- 31
Smith PM,
Howitt MR,
Panikov N.
et al.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell
homeostasis. Science 2013; 341: 569-573
MissingFormLabel
- 32
Malesza IJ,
Malesza M,
Walkowiak J.
et al.
High-fat, Western-style diet, systemic inflammation, and gut microbiota: A
narrative review. Cells 2021; 10: 3164
MissingFormLabel
- 33
Amoroso C,
Perillo F,
Strati F.
et al.
The role of gut microbiota biomodulators on mucosal immunity and intestinal
inflammation. Cells 2020; 9: 1234
MissingFormLabel
- 34
Camilleri M,
Vella A.
What to do about the leaky gut. Gut 2022; 71: 424-435
MissingFormLabel
- 35
Biskou O,
Jauregi-Miguel A.
Measuring intestinal permeability in celiac disease ex vivo, using Ussing
chambers. Methods Cell Biol 2023; 179: 21-38
MissingFormLabel
- 36
Fritscher-Ravens A,
Schuppan D,
Ellrichmann M.
et al.
Confocal endomicroscopy shows food-associated changes in the intestinal mucosa
of patients with irritable bowel syndrome. Gastroenterology 2014; 147: 1012-1020.e4
MissingFormLabel
- 37
Kiesslich R,
Duckworth CA,
Moussata D.
et al.
Local barrier dysfunction identified by confocal laser endomicroscopy predicts
relapse in inflammatory bowel disease. Gut 2012; 61: 1146-1153
MissingFormLabel
- 38
Barrett C,
Choksi Y,
Vaezi MF.
Mucosal impedance: A new approach to diagnosing gastroesophageal reflux disease
and eosinophilic esophagitis. Curr Gastroenterol Rep 2018; 20: 33
MissingFormLabel
- 39
Rao AS,
Camilleri M,
Eckert DJ.
et al.
Urine sugars for in vivo gut permeability: Validation and comparisons in
irritable bowel syndrome-diarrhea and controls. Am J Physiol-Gastrointest Liver Physiol
2011; 301: G919-G928
MissingFormLabel
- 40
Schoultz I,
Keita ÅV.
The intestinal barrier and current techniques for the assessment of gut
permeability. Cells 2020; 9: 1909
MissingFormLabel
- 41
Horowitz A,
Chanez-Paredes SD,
Haest X,
Turner JR.
Paracellular permeability and tight junction regulation in gut health and
disease. Nat Rev Gastroenterol Hepatol 2023; 20: 417-432
MissingFormLabel
- 42
Shen L.
Tight junctions on the move: Molecular mechanisms for epithelial barrier
regulation. Ann N Y Acad Sci 2012; 1258: 9-18
MissingFormLabel
- 43
Raftery T,
Martineau AR,
Greiller CL.
et al.
Effects of vitamin D supplementation on intestinal permeability, cathelicidin
and disease markers in Crohn’s disease: Results from a randomised double-blind
placebo-controlled study. United Eur Gastroenterol J 2015; 3: 294-302
MissingFormLabel
- 44
Trompette A,
Gollwitzer ES,
Yadava K.
et al.
Gut microbiota metabolism of dietary fiber influences allergic airway disease
and hematopoiesis. Nat Med 2014; 20: 159-166
MissingFormLabel
- 45
Seguella L,
Pesce M,
Capuano R.
et al.
High-fat diet impairs duodenal barrier function and elicits glia-dependent
changes along the gut-brain axis that are required for anxiogenic and
depressive-like behaviors. J Neuroinflamm 2021; 18: 115
MissingFormLabel
- 46
Mou Y,
Du Y,
Zhou L.
et al.
Gut microbiota interact with the brain through systemic chronic inflammation:
Implications on neuroinflammation, neurodegeneration, and aging. Front Immunol 2022;
13: 796288
MissingFormLabel
- 47
Ajamian M,
Steer D,
Rosella G,
Gibson PR.
Serum zonulin as a marker of intestinal mucosal barrier function: May not be
what it seems. PLoS One 2019; 14: e0210728
MissingFormLabel
- 48
Chiriac S,
Sfarti CV,
Minea H.
et al.
Impaired intestinal permeability assessed by confocal laser endomicroscopy—a new
potential therapeutic target in inflammatory bowel disease. Diagnostics 2023; 13:
1230
MissingFormLabel
- 49
Martel J,
Chang S-H,
Ko Y-F.
et al.
Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33: 247-265
MissingFormLabel
- 50
Martino JV,
Van Limbergen J,
Cahill LE.
The role of carrageenan and carboxymethylcellulose in the development of
intestinal inflammation. Front Pediatr 2017; 5: 96
MissingFormLabel
- 51
Yazici D,
Ogulur I,
Pat Y.
et al.
The epithelial barrier: The gateway to allergic, autoimmune, and metabolic
diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70: 101846
MissingFormLabel
- 52
Roberts CL,
Rushworth SL,
Richman E,
Rhodes JM.
Hypothesis: Increased consumption of emulsifiers as an explanation for the
rising incidence of Crohn’s disease. J Crohns Colitis 2013; 7: 338-341
MissingFormLabel
- 53
Mani V,
Hollis JH,
Gabler NK.
Dietary oil composition differentially modulates intestinal endotoxin transport
and postprandial endotoxemia. Nutr Metab 2013; 10: 6
MissingFormLabel