Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000093.xml
Ernährung & Medizin
DOI: 10.1055/a-2439-5831
DOI: 10.1055/a-2439-5831
Wissen
Leaky Gut – ernährungsassoziierte Störung der intestinalen Barriere

Leaky Gut (LG) ist eine Bezeichnung für Beeinträchtigungen der intestinalen Barriere. Diagnostische Ansätze sind bisher kaum evaluiert. Unklar ist auch, ob Barrierestörungen Ursache oder Begleiterscheinung von Erkrankungen sind. Evidenzbasierte Empfehlungen zu Prävention oder Therapie ableiten zu können, ist derzeit nicht möglich und erfordert eine stärkere Forschung zur Ätiologie und gesundheitlichen Bedeutung des LG.
Publication History
Article published online:
07 April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Camilleri M. What is the leaky gut? Clinical considerations in humans. Curr Opin Clin Nutr Metab Care 2021; 24: 473-482
- 2 Aleman RS, Moncada M, Aryana KJ. Leaky gut and the ingredients that help treat it: A review. Molecules 2023; 28: 619
- 3 Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019; 68: 1516-1526
- 4 Kobayashi N, Takahashi D, Takano S. et al. The roles of Peyer’s patches and microfold cells in the gut immune system: Relevance to Autoimmune Diseases. Front Immunol 2019; 10: 2345
- 5 Heinemann U, Schuetz A. Structural features of tight-junction proteins. Int J Mol Sci 2019; 20: 6020
- 6 Bauer H, Zweimueller-Mayer J, Steinbacher P. et al. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010; 2010: 402593
- 7 Findley MK, Koval M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009; 61: 431-437
- 8 Pelaseyed T, Bergström JH, Gustafsson JK. et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2014; 260: 8-20
- 9 Hansson GC. Mucins and the microbiome. Annu Rev Biochem 2020; 89: 769-793
- 10 Luis AS, Hansson GC. Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe 2023; 31: 1087-1100
- 11 Song C, Chai Z, Chen S. et al. Intestinal mucus components and secretion mechanisms: What we do and do not know. Exp Mol Med 2023; 55: 681-691
- 12 Tropini C, Earle KA, Huang KC, Sonnenburg JL. The gut microbiome: Connecting spatial organization to function. Cell Host Microbe 2017; 21: 433-442
- 13 Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol 2021; 11: 1463-1482
- 14 Mörbe UM, Jørgensen PB, Fenton TM. et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14: 793-802
- 15 Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol 2014; 14: 667-685
- 16 Bamias G, Kitsou K, Rivera-Nieves J. The underappreciated role of secretory IgA in IBD. Inflamm Bowel Dis 2023; 29: 1327-1341
- 17 Padoan A, Musso G, Contran N, Basso D. Inflammation, autoinflammation and autoimmunityin inflammatory bowel diseases. Curr Issues Mol Biol 2023; 45: 5534-5557
- 18 Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol 2017; 8: 598
- 19 Vanuytsel T, Tack J, Farre R. The role of intestinal permeability in gastrointestinal disorders and current methods of evaluation. Front Nutr 2021; 8: 717925
- 20 Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol-Gastrointest Liver Physiol 2020; 319: G589-G608
- 21 Binienda A, Twardowska A, Makaro A, Salaga M. Dietary carbohydrates and lipids in the pathogenesis of leaky gut syndrome: An overview. Int J Mol Sci 2020; 21: 8368
- 22 Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14: 479-489
- 23 Camilleri M. Human intestinal barrier: Effects of stressors, diet, prebiotics, and probiotics. Clin Transl Gastroenterol 2021; 12: e00308
- 24 Summa KC, Voigt RM, Forsyth CB. et al. Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 2013; 8: e67102
- 25 Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR. et al. Tight junctions: From molecules to gastrointestinal diseases. Tissue Barriers 2023; 11: 2077620
- 26 Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. Int J Environ Res Public Health 2021; 18: 12836
- 27 Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: The expected slimy partners?. Gut 2020; 69: 2232-2243
- 28 Etienne-Mesmin L, Chassaing B, Desvaux M. et al. Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43: 457-489
- 29 Christovich A, Luo XM. Gut microbiota, leaky gut, and autoimmune diseases. Front Immunol 2022; 13: 946248
- 30 Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ. et al. A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 2019; 25: 113-127.e6
- 31 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569-573
- 32 Malesza IJ, Malesza M, Walkowiak J. et al. High-fat, Western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells 2021; 10: 3164
- 33 Amoroso C, Perillo F, Strati F. et al. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 2020; 9: 1234
- 34 Camilleri M, Vella A. What to do about the leaky gut. Gut 2022; 71: 424-435
- 35 Biskou O, Jauregi-Miguel A. Measuring intestinal permeability in celiac disease ex vivo, using Ussing chambers. Methods Cell Biol 2023; 179: 21-38
- 36 Fritscher-Ravens A, Schuppan D, Ellrichmann M. et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2014; 147: 1012-1020.e4
- 37 Kiesslich R, Duckworth CA, Moussata D. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 2012; 61: 1146-1153
- 38 Barrett C, Choksi Y, Vaezi MF. Mucosal impedance: A new approach to diagnosing gastroesophageal reflux disease and eosinophilic esophagitis. Curr Gastroenterol Rep 2018; 20: 33
- 39 Rao AS, Camilleri M, Eckert DJ. et al. Urine sugars for in vivo gut permeability: Validation and comparisons in irritable bowel syndrome-diarrhea and controls. Am J Physiol-Gastrointest Liver Physiol 2011; 301: G919-G928
- 40 Schoultz I, Keita ÅV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells 2020; 9: 1909
- 41 Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023; 20: 417-432
- 42 Shen L. Tight junctions on the move: Molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci 2012; 1258: 9-18
- 43 Raftery T, Martineau AR, Greiller CL. et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J 2015; 3: 294-302
- 44 Trompette A, Gollwitzer ES, Yadava K. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159-166
- 45 Seguella L, Pesce M, Capuano R. et al. High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflamm 2021; 18: 115
- 46 Mou Y, Du Y, Zhou L. et al. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging. Front Immunol 2022; 13: 796288
- 47 Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems. PLoS One 2019; 14: e0210728
- 48 Chiriac S, Sfarti CV, Minea H. et al. Impaired intestinal permeability assessed by confocal laser endomicroscopy—a new potential therapeutic target in inflammatory bowel disease. Diagnostics 2023; 13: 1230
- 49 Martel J, Chang S-H, Ko Y-F. et al. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33: 247-265
- 50 Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr 2017; 5: 96
- 51 Yazici D, Ogulur I, Pat Y. et al. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70: 101846
- 52 Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: Increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. J Crohns Colitis 2013; 7: 338-341
- 53 Mani V, Hollis JH, Gabler NK. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr Metab 2013; 10: 6