Subscribe to RSS
DOI: 10.1055/a-2418-5173
Laser-Based Therapy Approaches in the Retina: A Review of Micropulse Laser Therapy for Diabetic Retinopathy
Laserbasierte Therapieansätze für die Netzhaut: ein Überblick über die Mikroimpuls-Lasertherapie bei diabetischer Retinopathie
Abstract
Purpose This review aims to elucidate the mechanisms and clinical utility of subthreshold micropulse laser (SML) therapy in the context of retinal care. Subthreshold or “nondestructive” laser therapy encompasses treatment modalities that induce minimal or no harm to retinal or choroidal tissue and leave no visible sings post-application, while achieving clinical efficacy.
Methods A comprehensive review of literature sourced from databases including PubMed, Medline, Embase, Cochrane, and Web of Science was conducted, focusing on articles published before February 2024, and discussing the contemporary use of SML therapy in treating diabetic retinopathy (DR).
Results The review presents evidence from scientific literature supporting SML therapy as a viable therapeutic approach for management of DR. Across numerous studies, SML therapy has demonstrated safety and additional therapeutic efficacy without causing damage to underlying retinal tissue.
Conclusion Subthreshold laser treatment emerges as a safe strategy for addressing DR. Numerous studies have shown its additional efficacy to anti-VEGF pharmacotherapy, which is the currently approved monotherapy for complications of DR. Ongoing research and clinical investigations aim to further elucidate the mechanisms and optimize the therapeutic advantages of this technology.
Zusammenfassung
Zielsetzung Ziel dieser Übersicht ist es, die Mechanismen sowie den klinischen Nutzen des Einsatzes von Nanolasern im Rahmen der Netzhautbehandlung zu untersuchen. Eine Therapie mit Nanolaser (auch Subthreshold-Micropulse-Laser bzw. SML genannt) umfasst klinisch wirksame Behandlungsmethoden, die Netzhaut- und Aderhautgewebe so schonen, dass schlimmstenfalls minimale Schäden verursacht werden. Es bleiben nach der Behandlung keine sichtbaren Spuren zurück.
Methoden In diese Übersicht wurden hauptsächlich Artikel mit Veröffentlichungsdatum vor Februar 2024 einbezogen, die den aktuellen Einsatz von Nanolasern zur Behandlung der diabetischen Retinopathie (DR) beschreiben. Als Quelle diente eine umfassende Literaturrecherche mittels Datenbanken wie PubMed, Medline, Embase, Cochrane und Web of Science.
Ergebnisse Diese Übersicht präsentiert Nachweise aus der wissenschaftlichen Literatur, die den Einsatz von Nanolasern als effektiven Therapieansatz zur Kontrolle einer diabetischen Retinopathie unterstützen. In zahlreichen Studien hat sich gezeigt, dass der Einsatz eines Nanolasers eine sichere Behandlungsmethode mit zusätzlicher therapeutischer Wirksamkeit darstellt, die gleichzeitig das darunterliegende Netzhautgewebe effektiv schont.
Schlussfolgerung Der Einsatz des Nanolasers hat sich als effektive Strategie zur schonenden Behandlung der diabetischen Retinopathie erwiesen. Die zusätzliche Wirksamkeit wurde im Vergleich zur Anti-VEGF-Pharmakotherapie, die derzeit als zugelassene Monotherapie bei Folgeerscheinungen der DR gilt, durch zahlreiche Studien belegt. Weitere Forschung und klinische Untersuchungen sollen die Mechanismen näher beleuchten, um die therapeutischen Vorteile dieser Technologie zu optimieren.
Publication History
Received: 11 March 2024
Accepted: 13 September 2024
Article published online:
10 October 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Spital G, Faatz H. Diabetic Retinopathy – a Common Disease. Klin Monbl Augenheilkd 2023; 240: 1060-1070
- 2 Gomułka K, Ruta M. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy-A Short Review. Int J Mol Sci 2023; 24: 1024
- 3 Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci 2018; 19: 942
- 4 Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17: 195-206
- 5 Grzybowski A, Luttrull JK, Kozak I. eds. Retina Lasers in Ophthalmology. Clinical Insights and Advancements. Berlin, Heidelberg: Springer; 2023
- 6 Braunger BM, Gießl A, Schlötzer-Schrehardt U. The Blood-ocular Barriers and their Dysfunction: Anatomy, Physiology, Pathology. Klin Monbl Augenheilkd 2023; 240: 650-661
- 7 Luttrull JK, Sramek C, Palanker D. et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina 2012; 32: 375-386
- 8 van Dijk HW, Verbraak FD, Kok PH. et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 3660-3665
- 9 van Dijk HW, Verbraak FD, Kok PH. et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 2012; 53: 2715-2719
- 10 Wood JP, Shibeeb O, Plunkett M. et al. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci 2013; 54: 2305-2318
- 11 Chidlow G, Shibeeb O, Plunkett M. et al. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci 2013; 54: 2319-2332
- 12 Treumer F, Klettner A, Baltz J. et al. Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): Towards slowing the macular ageing process. Exp Eye Res 2012; 97: 63-72
- 13 Kern K, Mertineit CL, Brinkmann R. et al. Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells. Exp Eye Res 2018; 170: 117-126
- 14 Kregel K. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 2002; 92: 2177-2186
- 15 Kollias AN, Ulbig MW. Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch Arztebl Int 2010; 107: 75-83
- 16 Chaudhary S, Zaveri J, Becker N. Proliferative diabetic retinopathy (PDR). Dis Mon 2021; 67: 101140
- 17 Vujosevic S, Fantaguzzi F, Salongcay R. et al. Multimodal retinal imaging in patients with diabetes mellitus and association with cerebrovascular disease. Ophthalmic Res 2023; 66: 1044-1052
- 18 Sun Z, Yang D, Tang Z. et al. Optical coherence tomography angiography in diabetic retinopathy: an updated review. Eye (Lond) 2021; 35: 149-161
- 19 Cao D, Young D, Huang Z. et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol 2018; 55: 469-477
- 20 Yasin Alibhai A, Moult EM, Shahzad R. et al. Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy. Ophthalmol Retina 2018; 2: 418-427
- 21 de Carlo TE, Chin AT, Bonini Filho MA. et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 2015; 35: 2364-2370
- 22 Bajka A, Bacci T, Wiest MRJ. et al. Feasibility and Clinical Utility of Wide-Field Optical Coherence Tomography Angiography Compared to Ultrawide-Field Fluorescein Angiography in Patients with Diabetic Retinopathy. Klin Monbl Augenheilkd 2023; 240: 490-495
- 23 Midena E, Vujosevic S. Microperimetry in diabetic retinopathy. Saudi J Ophthalmol 2011; 25: 131-135
- 24 Nittala MG, Gella L, Raman R. et al. Measuring retinal sensitivity with the microperimeter in patients with diabetes. Retina 2012; 32: 1302-1309
- 25 Vujosevic S, Midena E, Pilotto E. et al. Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. Invest Ophthalmol Vis Sci 2006; 47: 3044-3051
- 26 Kube T, Schmidt S, Toonen F. et al. Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope. Ophthalmologica 2005; 219: 16-20
- 27 Okada K, Yamamoto S, Mizunoya S. et al. Correlation of retinal sensitivity measured with fundus-related microperimetry to visual acuity and retinal thickness in eyes with diabetic macular edema. Eye (Lond) 2006; 20: 805-809
- 28 Safi H, Safi S, Hafezi-Moghadam A. et al. Early detection of diabetic retinopathy. Surv Ophthalmol 2018; 63: 601-608
- 29 Ba-Ali S, Larsen M, Andersen HU. et al. Full-field and multifocal electroretinogram in non-diabetic controls and diabetics with and without retinopathy. Acta Ophthalmol 2022; 100: e1719-e1728
- 30 Fortune B, Schneck ME, Adams AJ. et al. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-2651
- 31 Bearse jr. MA, Han Y, Schneck ME. et al. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 3259-3265
- 32 Han Y, Bearse jr. MA, Schneck ME. et al. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948-954
- 33 Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 1985; 103: 1796-1806
- 34 Everett LA, Paulus YM. Laser Therapy in the Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr Diab Rep 2021; 21: 35
- 35 Wolbarsht ML, Landers 3rd MB. The rationale of photocoagulation therapy for proliferative diabetic retinopathy: a review and a model. Ophthalmic Surg 1980; 11: 235-245
- 36 Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 2001; 79: 435-440
- 37 Ascaso FJ, Huerva V, Grzybowski A. The role of inflammation in the pathogenesis of macular edema secondary to retinal vascular diseases. Mediators Inflamm 2014; 2014: 432685
- 38 Chalke SD, Kale PP. Combinational Approaches Targeting Neurodegeneration, Oxidative Stress, and Inflammation in the Treatment of Diabetic Retinopathy. Curr Drug Targets 2021; 22: 1810-1824
- 39 Gross JG, Glasman AR, Liu D. et al. Five-Year Outcomes of Panretinal Photocoagulation vs. Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol 2018; 136: 1138-1148
- 40 Diabetic Retinopathy Study Research Group. Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. Arch Ophthalmol 1979; 97: 654-655
- 41 Chauhan MZ, Rather PA, Samarah SM. et al. Current and novel therapeutic approaches for treatment of diabetic macular edema. Cells 2022; 11: 1950
- 42 Nguyen QD, Brown DM, Marcus DM. et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012; 119: 789-801
- 43 Barteselli G, Kozak I, El-Emam S. et al. 12-month results of the standardised combination therapy for diabetic macular oedema: intravitreal bevacizumab and navigated retinal photocoagulation. Br J Ophthalmol 2014; 98: 1036-1041
- 44 Do DV, Nguyen QD, Khwaja AA. et al. Ranibizumab for edema of the macula in diabetes study: 3-year outcomes and the need for prolonged frequent treatment. JAMA Ophthalmol 2013; 131: 139-145
- 45 Bandello F, Brancato R, Menchini U. et al. Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CPRP) in proliferative diabetic retinopathy. Semin Ophthalmol 2001; 16: 12-18
- 46 Lavinsky D, Cardillo JA, Melo LA. et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci 2011; 52: 4314-4323
- 47 Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 2012; 8: 274-284
- 48 Chhablani J, Roh YJ, Jobling AI. et al. Restorative retinal laser therapy: Present state and future directions. Surv Ophthalmol 2018; 63: 307-328
- 49 Grzybowski A, Sulaviková Z, Gawęcki M. et al. Subthreshold laser treatment in retinal diseases: a mini review. Graefes Arch Clin Exp Ophthalmol 2024; 262: 2337-2344
- 50 Karasu B, Akbas YB, Aykut A. et al. Subthreshold Photocoagulation, Laser Endpoint Management Based on Optical Coherence Tomography Angiography in Cases of Diabetic Macular Edema Refractory to Anti-VEGF. Klin Monbl Augenheilkd 2024; 241: 197-208
- 51 Hamada M, Ohkoshi K, Inagaki K. et al. Subthreshold Photocoagulation Using Endpoint Management in the PASCAL® System for Diffuse Diabetic Macular Edema. J Ophthalmol 2018; 2018: 7465794
- 52 Pei-Pei W, Shi-Zhou H, Zhen T. et al. Randomised clinical trial evaluating best-corrected visual acuity and central macular thickness after 532-nm subthreshold laser grid photocoagulation treatment in diabetic macular oedema. Eye (Lond) 2015; 29: 313-321 quiz 322
- 53 Kozak I, Luttrull JK. Modern retinal laser therapy. Saudi J Ophthalmol 2015; 29: 137-146
- 54 Luttrull JK, Musch DC, Mainster MA. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol 2005; 89: 74-80
- 55 Vujosevic S, Martini F, Longhin E. et al. Sub- threshold micropulse yellow laser versus sub-threshold micropulse infrared laser in center-involving diabetic macular edema: morphological and functional safety. Retina 2015; 35: 1594-1603
- 56 Figueira J, Khan J, Nunes S. et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol 2009; 93: 1341-1344
- 57 Lois N, Campbell C, Waugh N. et al. Diabetic Macular Edema and Diode Subthreshold Micropulse Laser: A Randomized Double-Masked Noninferiority Clinical Trial. Ophthalmology 2023; 130: 14-27
- 58 Li G, Ho M, Li S. et al. Comparing functional and vascular layer outcomes of laser photocoagulation versus subthreshold micropulse laser for diabetic macular edema: an OCT-angiography study. Retina 2023; 43: 823-831
- 59 Chen G, Tzekov R, Li W. et al. Subthreshold Micropulse Diode Laser Versus Conventional Laser Photocoagulation for Diabetic Macular Edema: A Meta-Analysis of Randomized Controlled Trials. Retina 2016; 36: 2059-2065
- 60 Gross JG, Glasmann AR, Jampol LM. et al. Panretinal Photocoagulation vs. Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2015; 314: 2137-2146
- 61 Vujosevic S, Gatti V, Muraca A. et al. Optical Coherence Tomography Angiography Changes after Subthreshold Micropulse Yellow Laser in Diabetic Macular Edema. Retina 2020; 40: 312-321
- 62 Vujosevic S, Toma C, Villani E. et al. Subthreshold Micropulse Laser in Diabetic Macular Edema: 1-Year Improvement in OCT/OCT-Angiography Biomarkers. Transl Vis Sci Technol 2020; 9: 31
- 63 Battaglia Parodi M, Bandello F. Is laser still important in diabetic macular edema as primary or deferral therapy?. Dev Ophthalmol 2017; 60: 125-130
- 64 Kozak I, Oster SF, Cortes MA. et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology 2011; 118: 1119-1124
- 65 Kernt M, Cheuteu RE, Cserhati S. et al. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol 2012; 6: 289-296
- 66 Chang DB, Luttrull JK. Comparison of Subthreshold 577 and 810 nm Micropulse Laser Effects on Heat-Shock Protein Activation Kinetics: Implications for Treatment Efficacy and Safety. Transl Vis Sci Technol 2020; 9: 23
- 67 Jhingan M, Goud A, Peguda HK. et al. Subthreshold microsecond laser for proliferative diabetic retinopathy: a randomized pilot study. Clin Ophthalmol 2018; 12: 141-145
- 68 Al-Barki A, Al-Hijji L, High R. et al. Comparison of short-pulse subthreshold (532 nm) and infrared micropulse (810 nm) macular laser for diabetic macular edema. Sci Rep 2010; 11: 14