Subscribe to RSS
DOI: 10.1055/a-2236-8874
Alumina-Promoted Copper-Catalyzed Hydroboration of Alkynes
This work was supported by the Russian Science Foundation (grant number 19-13-00223P).

Abstract
Alumina was found to activate Cu(I) catalysts in hydroboration of alkynes. This allowed to develop a simple and efficient protocol for hydroboration of alkynes with B2Pin2 using inexpensive CuCl/PPh3 catalytic system. The approach does not require moisture-sensitive activators and stepwise preparation of ‘activated’ Cu complex. The developed conditions were applied to the preparation of β-styrylboronates from terminal and internal alkynes with excellent regio- and stereoselectivity. The procedure can also be extended to other terminal alkynes by the appropriate choice of ligand.
Key words
alumina - copper - hydroboration - alkynes - vinylboronic esters - stereoselective synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2236-8874.
- Supporting Information
Publication History
Received: 15 November 2023
Accepted after revision: 02 January 2024
Accepted Manuscript online:
02 January 2024
Article published online:
31 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Carreras J, Caballero A, Pérez PJ. Chem. Asian J. 2019; 14: 329
- 1b Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Wiley; New York: 2006
- 2a Beletskaya IP, Alonso F, Tyurin V. Coord. Chem. Rev. 2019; 385: 137
- 2b Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2013; 43: 412
- 2c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 3a Berthon G, Hayashi T. In Catalytic Asymmetric Conjugate Reactions . Cordova A. Wiley; New York: 2010: 1-70
- 3b Hayashi T. Synlett 2001; 879
- 3c Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
- 4a Marques C, Brandão P. Catalysts 2023; 13: 1022
- 4b Wu P, Givskov M, Nielsen TE. Chem. Rev. 2019; 119: 11245
- 4c Petasis NA. In Multicomponent Reactions . Zhu J, Bienaymé H. Wiley; New York: 2005: 199-223
- 4d Petasis NA, Akritopoulou I. Tetrahedron Lett. 1993; 34: 583
- 5a Vijayan A, Rao DN, Radhakrishnan KV, Lam PY. S, Das P. Synthesis 2021; 53: 805
- 5b Chen J.-Q, Li J.-H, Dong Z.-B. Adv. Synth. Catal. 2020; 362: 3311
- 5c West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
- 5d Tkachuk VM, Lukianov OO, Vovk MV, Gillaizeau I, Sukach VA. Beilstein J. Org. Chem. 2020; 16: 2304
- 5e Steemers L, van Maarseveen JH. Org. Biomol. Chem. 2019; 17: 2103
- 5f Motornov V, Latyshev GV, Kotovshchikov YN, Lukashev NV, Beletskaya IP. Adv. Synth. Catal. 2019; 361: 3306
- 5g Steemers L, Wijsman L, van Maarseveen JH. Adv. Synth. Catal. 2018; 360: 4241
- 5h Huang F, Quach TD, Batey RA. Org. Lett. 2013; 15: 3150
- 6a Zhao C.-G, Du C, Guo Z, Li W, Han J, Xie J. Angew. Chem. Int. Ed. 2023; 62: e202312414
- 6b Gosak K, Časar Z. Tetrahedron Lett. 2023; 64: 154804
- 6c Jang WJ, Woo J, Yun J. Angew. Chem. Int. Ed. 2021; 60: 4614
- 6d Lee H, Lee S, Yun J. ACS Catal. 2020; 10: 2069
- 6e Zhang Y, Han B, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 13860
- 6f Bera S, Hu X. Angew. Chem. Int. Ed. 2019; 58: 13854
- 6g Corless VB, Holownia A, Foy H, Mendoza-Sanchez R, Adachi S, Dudding T, Yudin AK. Org. Lett. 2018; 20: 5300
- 7a Brown HC, Gupta SK. J. Am. Chem. Soc. 1975; 97: 5249
- 7b Tucker CE, Davidson J, Knochel P. J. Org. Chem. 1992; 57: 3482
- 7c Ton NN. H, Mai BK, Nguyen TV. J. Org. Chem. 2021; 86: 9117
- 7d Yan D, Wu X, Xiao J, Zhu Z, Xu X, Bao X, Yao Y, Shen Q, Xue M. Org. Chem. Front. 2019; 6: 648
- 7e Bisai MK, Yadav S, Das T, Vanka K, Sen SS. Chem. Commun. 2019; 55: 11711
- 7f Liu J, Wu C, Hu T, Yang W, Xie Y, Shi Y, Liu Q, Shao Y, Zhang F. J. Org. Chem. 2022; 87: 3442
- 7g Li J, An M, Gao Z, Guo Y, Liu H, Zhao P, Bi X, Shi E, Xiao J. RSC Adv. 2022; 12: 16530
- 7h Magre M, Maity B, Falconnet A, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 7025
- 8a Geier SJ, Vogels CM, Melanson JA, Westcott SA. Chem. Soc. Rev. 2022; 51: 8877
- 8b Trost BM, Ball ZT. Synthesis 2005; 853
- 8c Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
- 9a Wang Y, Li Y, Wang L, Ding S, Song L, Zhang X, Wu Y.-D, Sun J. J. Am. Chem. Soc. 2023; 145: 2305
- 9b Ding H, Gao W, Yu T, Wang Z, Gou F, Ding S. J. Org. Chem. 2022; 87: 1526
- 9c Fiorito D, Mazet C. ACS Catal. 2018; 8: 9382
- 10a Martínez-Bascuñana A, Núñez-Rico JL, Carreras L, Vidal-Ferran A. ACS Catal. 2023; 13: 10447
- 10b Lyu Y, Toriumi N, Iwasawa N. Org. Lett. 2021; 23: 9262
- 10c Pereira S, Srebnik M. Tetrahedron Lett. 1996; 37: 3283
- 11a Parsutkar MM, Bhunia S, Majumder M, Lalisse RF, Hadad CM, RajanBabu TV. J. Am. Chem. Soc. 2023; 145: 7462
- 11b Jia J, Wu T, Fu Y, Hu Z, Tang H, Pan Y, Huang F. Adv. Synth. Catal. 2022; 364: 1873
- 11c Bołt M, Żak P. RSC Adv. 2022; 12: 18572
- 11d Bergamaschi E, Teskey CJ. Tetrahedron Lett. 2022; 98: 153813
- 11e Yang Y, Zeng J.-H, Zhan Z.-P. Org. Chem. Front. 2021; 8: 2537
- 11f González MJ, Bauer F, Breit B. Org. Lett. 2021; 23: 8199
- 11g Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
- 12a Gorgas N, Stöger B, Veiros LF, Kirchner K. ACS Catal. 2018; 8: 7973
- 12b Khan A, Asiri AM, Kosa SA, Garcia H, Grirrane A. J. Catal. 2015; 329: 401
- 12c Greenhalgh MD, Jones AS, Thomas SP. ChemCatChem 2015; 7: 190
- 13 Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. ACS Catal. 2022; 12: 5425
- 14 Liu J, Xie Y, Wu C, Shao Y, Zhang F, Shi Y, Liu Q, Chen J. Org. Chem. Front. 2021; 8: 3802
- 15 Mandal S, Verma PK, Geetharani K. Chem. Commun. 2018; 54: 13690
- 16a Lou Y, Wang J, Gong G, Guan F, Lu J, Wen J, Zhang X. Chem. Sci. 2020; 11: 851
- 16b Zhu G, Kong W, Feng H, Qian Z. J. Org. Chem. 2014; 79: 1786
- 16c Lipshutz BH, Bošković ŽV, Aue DH. Angew. Chem. Int. Ed. 2008; 47: 10183
- 17a Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 29: 982
- 17b Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
- 17c Lee J.-E, Kwon J, Yun J. Chem. Commun. 2008; 733
- 17d Hemming D, Fritzemeier R, Westcott SA, Santos WL, Steel PG. Chem. Soc. Rev. 2018; 47: 7477
- 17e Barbeyron R, Benedetti E, Cossy J, Vasseur J.-J, Arseniyadis S, Smietana M. Tetrahedron 2014; 70: 8431
- 18a Bhawar R, Saini S, Nagaraju DH, Bose SK. Adv. Synth. Catal. 2023; 365: 584
- 18b Xu L, Dong Z, Zhang Q, Deng N, Li S.-Y, Xu H.-J. J. Org. Chem. 2022; 87: 14879
- 19a Bidal YD, Lazreg F, Cazin CS. J. ACS Catal. 2014; 4: 1564
- 19b Stavber G, Časar Z. Appl. Organomet. Chem. 2013; 27: 159
- 19c Wei R.-J, You P.-Y, Duan H, Xie M, Xia R.-Q, Chen X, Zhao X, Ning G.-H, Cooper AI, Li D. J. Am. Chem. Soc. 2022; 144: 17487
- 19d Zhong M, Gagné Y, Hope TO, Pannecoucke X, Frenette M, Jubault P, Poisson T. Angew. Chem. Int. Ed. 2021; 60: 14498
- 20a Fujihara T, Semba K, Terao J, Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699
- 20b Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
- 20c Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179
- 20d Roy S, Mishra A, Sekhar Pati S, Behera M, Prakash Das J. Asian J. Org. Chem. 2023; 12: e202200505
- 21a Zhang P, Meijide Suárez J, Driant T, Derat E, Zhang Y, Ménand M, Roland S, Sollogoub M. Angew. Chem. Int. Ed. 2017; 56: 10821
- 21b Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
- 22a Li B, Liang H, Vignesh A, Zhou X, Liu Y, Ke Z. Molecules 2023; 28: 2252
- 22b Chen J.-B, Whiting A. Synthesis 2018; 50: 3843
- 22c Yun J. Asian J. Org. Chem. 2013; 2: 1016
- 23a Ting SI, Snelson DW, Huffman TR, Kuroo A, Sato R, Shenvi RA. J. Am. Chem. Soc. 2023; 145: 20634
- 23b Zheng C, Xie T, He H, Gao S. Org. Lett. 2021; 23: 469
- 23c Linne Y, Bonandi E, Tabet C, Geldsetzer J, Kalesse M. Angew. Chem. Int. Ed. 2021; 60: 6938
- 23d Xie T, Zheng C, Chen K, He H, Gao S. Angew. Chem. Int. Ed. 2020; 59: 4360
- 23e Zhang Q, Zhang F.-M, Zhang C.-S, Liu S.-Z, Tian J.-M, Wang S.-H, Zhang X.-M, Tu Y.-Q. Nat. Commun. 2019; 10: 2507
- 23f Meng Z, Fürstner A. J. Am. Chem. Soc. 2019; 141: 805
- 23g Yoshida H, Takemoto Y, Takaki K. Chem. Commun. 2014; 50: 8299
- 23h Hesse MJ, Butts CP, Willis CL, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 12444
- 24a Innocenti R, Lenci E, Trabocchi A. Tetrahedron Lett. 2020; 61: 152083
- 24b Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
- 24c Zhao H, Lin Y, Jiang M, Su B. Chem. Sci. 2023; 14: 7897
- 24d Gao Y, Kim N, Mendoza SD, Yazdani S, Faria Vieira A, Liu M, Kendrick A, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. ACS Catal. 2022; 12: 7243
- 24e Li Z, Sun J. Org. Lett. 2021; 23: 3706
- 24f Cheng T, Liu B, Wu R, Zhu S. Chem. Sci. 2022; 13: 7604
- 24g Suliman AM. Y, Ahmed E.-AM. A, Gong T.-J, Fu Y. Org. Lett. 2021; 23: 3259
- 24h Baumann JE, Lalic G. Angew. Chem. Int. Ed. 2022; 61: e202206462
- 25a Feng C, Wang H, Xu L, Li P. Org. Biomol. Chem. 2015; 13: 7136
- 25b Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
- 26a Beletskaya IP, Nenajdenko VG. Angew. Chem. Int. Ed. 2019; 58: 4778
- 26b Nájera C, Beletskaya IP, Yus M. Chem. Soc. Rev. 2019; 48: 4515
- 26c Beletskaya IP, Nájera C, Yus M. Russ. Chem. Rev. 2020; 89: 250
- 27 Activator-free Cu-catalyzed hydroboration usually requires specific catalysts and prolonged heating, see, e.g.: Tsai H, Madasu M, Huang MH. Chem. Eur. J. 2019; 25: 1300
- 28 Chan T.-L, Fong S, Li Y, Man T.-O, Poon C.-D. J. Chem. Soc., Chem. Commun. 1994; 1771
- 29a Yamawaki J, Kawate T, Ando T, Hanafusa T. Bull. Chem. Soc. Jpn. 1983; 56: 1885
- 29b Blass BE. Tetrahedron 2002; 58: 9301
- 30 Weinstock LM, Stevenson JM, Tomellin SA, Pan S.-H, Utne T, Jobson RB, Reinhold DF. Tetrahedron Lett. 1986; 27: 3845
- 31a Roy CD, Brown HC. J. Organomet. Chem. 2007; 692: 784
- 31b Oka N, Yamada T, Sajiki H, Akai S, Ikawa T. Org. Lett. 2022; 24: 3510
- 32a Huang J, Li X, Wen H, Ouyang L, Luo N, Liao J, Luo R. ACS Omega 2021; 6: 11740
- 32b Han X, Hu J, Chen C, Yuan Y, Shi Z. Chem. Commun. 2019; 55: 6922
- 32c Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
- 32d Yoshida H, Kageyuki I, Takaki K. Org. Lett. 2013; 15: 952
- 33a Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org. Lett. 2019; 21: 9812
- 33b Hayrapetyan D, Khalimon AY. Chem. Asian J. 2020; 15: 2575
- 34 Ho HE, Asao N, Yamamoto Y, Jin T. Org. Lett. 2014; 16: 4670
- 35 Reid WB, Spillane JJ, Krause SB, Watson DA. J. Am. Chem. Soc. 2016; 138: 5539
- 36 Gioia B, Arnaud A, Radix S, Walchshofer N, Doléans-Jordheim A, Rocheblave L. Tetrahedron Lett. 2020; 61: 151596
- 37 Zhao J, Niu Z, Fu H, Li Y. Chem. Commun. 2014; 50: 2058
For selected reviews, see:
For reviews, see:
For selected examples, see:
For recent examples, see:
For recent achievements in TM-free hydroboration with HBPin, see:
For reviews on TM-catalyzed hydroboration, see:
For selected examples, see:
For reviews, see:
For hydroborations of alkynes with B2Pin2, catalyzed by other TMs, see:
For reviews, see:
For reviews, see:
For representative examples, see:
For representative procedures, see:
Cu(OAc)2 is known to catalyze reaction of B2Pin2 with alkynes: