Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000093.xml
Ernährung & Medizin 2023; 38(04): 152-157
DOI: 10.1055/a-2142-0722
DOI: 10.1055/a-2142-0722
Wissen
Das Darmmikrobiom: Eintrittspforte in eine neue Ära der personalisierten Medizin

Darmbakterien übernehmen eine Vielzahl von Aufgaben für den Menschen. Sie fördern Gesundheit wie Krankheit. Mit diesem Wissen haben Ärzte zukünftig eine neue Waffe zur Hand, um präventiv wie therapeutisch im Rahmen einer hoch-personalisierten Medizin zu wirken.
Publication History
Article published online:
04 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227-238
- 2 Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352: 539-544
- 3 Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathology 2013; 182: 375-387
- 4 Huang X, Oshima T, Tomita T. et al. Butyrate alleviates cytokine-induced barrier dysfunction by modifying claudin-2 levels. Biology 2021; 10: 205
- 5 Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol 2019; 49: 842-848
- 6 Querfurth HW, Laferla FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329-344
- 7 Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response?. Nat Med 2006; 12: 1005-1015
- 8 Harach T, Marungruang N, Duthilleul N. et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802
- 9 Shen H, Guan Q, Zhang X. et al. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog. Neuropsychopharmacol. Biol Psychiatry 2020; 100: 109884
- 10 Li B, He Y, Ma J. et al. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement 2019; 15: 1357-1366
- 11 Ling Z, Zhu M, Yan X. et al. Structural and functional dysbiosis of fecal microbiota in Chinese patients with Alzheimer’s Disease. Front Cell Dev Biol 2020; 8: 634069
- 12 Liu P, Wu L, Peng G. et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 2019; 80: 633-643
- 13 Laske C, Müller S, Preische O. et al. Signature of Alzheimer's disease in intestinal microbiome: Results from the AlzBiom study. Front Neurosci 2022; 16: 792996
- 14 Michel TM, Gsell W, Käsbauer L. et al. Increased activity of mitochondrial aldehyde dehydrogenase (ALDH) in the putamen of individuals with Alzheimer’s disease: a human postmortem study. J Alzheimers Dis 2010; 19: 1295-1301
- 15 Krüger JF, Hillesheim E, Pereira A. et al. Probiotics for dementia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2021; 79: 160-170
- 16 Akbari E, Asemi Z, Daneshvar Kakhaki R. et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256
- 17 Koeth RA, Levison BS, Culley MK. et al. Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metabolism 2014; 20: 799-812
- 18 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57-63
- 19 Wu WK, Panyod S, Liu PY. et al. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery. Microbiome 2020; 8: 162
- 20 Tang WH, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368: 1575-1584
- 21 Zhu W, Gregory JC, Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165: 111-124
- 22 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
- 23 Chen ML, Yi L, Zhang Y. et al. Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 2016; 7: e02210-15
- 24 Wang Z, Roberts AB, Buffa JA. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163: 1585-1595