Endoscopy 2023; 55(05): 415-422
DOI: 10.1055/a-1971-1274
Original article

Accurate prediction of histological grading of intraductal papillary mucinous neoplasia using deep learning

1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Markus Heilmaier
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Veit Phillip
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Matthias Treiber
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Ulrich Mayr
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Tobias Lahmer
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
2   Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
,
Ihsan Ekin Demir
3   Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Helmut Friess
3   Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Maximilian Reichert
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
4   German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
,
Roland M. Schmid
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
4   German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
,
Mohamed Abdelhafez
1   Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
› Institutsangaben

Gefördert durch: Deutsche Krebshilfe Max-Eder Program 111273 and #70114328 Gefördert durch: Deutsche Forschungsgemeinschaft DFG-SFB1321 (Project-ID 329628492)


Preview

Abstract

Background Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images.

Methods For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify “low grade IPMN” from “high grade IPMN/invasive carcinoma.” Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines.

Results Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %–99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %–71.3 %) and 70.4 % (95 %CI 49.8–86.2).

Conclusion This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.



Publikationsverlauf

Eingereicht: 01. Mai 2022

Angenommen nach Revision: 02. November 2022

Accepted Manuscript online:
02. November 2022

Artikel online veröffentlicht:
22. Februar 2023

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany