Synlett 2022; 33(01): 34-37
DOI: 10.1055/a-1659-7656
cluster
Editorial Board Cluster

Bis(η5-cyclopentadienyl)[μ-(4b,5,5a-η3:9b,10,10a-η3)-2,3,7,8-tetrakis(trimethylsilyl)benzo[3,4]cyclobuta[1,2-b]biphenylene]-syn-dicobalt (Co–Co), a Dinuclear π-Complex of the Linear [3]Phenylene Framework

Robin Padilla
a   Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, USA
,
a   Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, USA
,
Kendall N. Houk
b   Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
,
Jonathan J. Wong
b   Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
› Author Affiliations
We are grateful to the National Science Foundation (CHE-0907800 to K.P.C.V. and CHF-1764328 to K.N.H.) for financial support. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and in the Extreme Science and Engineering Discovery Environment (XSEDE), which is funded by the National Science Foundation (Grant OCI-1053575).


Abstract

The title compound was made by the reaction of the CpCo-complex of 2,3,7,8-tetrakis(trimethylsilyl) linear [3]phenylene, in which the metal coordinates one of the cyclobutadiene rings, with CpCo(C2H4)2. Because of its relative stability, a syn-dicobalt-bound configuration is indicated rather than its anti alternative.

Supporting Information



Publication History

Received: 03 September 2021

Accepted after revision: 01 October 2021

Accepted Manuscript online:
01 October 2021

Article published online:
14 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Miljanić, O. Š.; Vollhardt, K. P. C. In Carbon Rich Compounds: Molecules to Materials; Haley, M. M.; Tykwinski R. R., Eds.; Wiley-VCH: Weinheim, 2005, 140.
    • 1b Dosche C, Löhmannsröben H.-G, Bieser A, Dosa PI, Han S, Iwamoto M, Schleifenbaum A, Vollhardt KP. C. Phys. Chem. Chem. Phys. 2002; 4: 2156
    • 1c Mohler DL, Vollhardt KP. C. Adv. Strain Org. Chem. 1996; 5: 121
    • 1d Vollhardt KP. C. Pure Appl. Chem. 1993; 65: 153
    • 2a Albright TA, Dosa PI, Grossmann TN, Khrustalev VN, Oloba OA, Padilla R, Paubelle R, Stanger A, Timofeeva TV, Vollhardt KP. C. Angew. Chem. Int. Ed. 2009; 48: 9853
    • 2b Blanco L, Helson HE, Hirthammer H, Mestdagh H, Spyroudis S, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1987; 26: 1246
    • 2c Hirthammer M, Vollhardt KP. C. J. Am. Chem. Soc. 1986; 108: 2481
    • 3a Albright TA, Drissi R, Gandon V, Oldenhof S, Oloba-Whenu OA, Padilla R, Shen H, Vollhardt KP. C, Vreeken V. Chem. Eur. J. 2015; 21: 4546
    • 3b Albright TA, Oldenhof S, Oloba OA, Padilla R, Vollhardt KP. C. Chem. Commun. 2011; 47: 9039
    • 4a Butters T, Winter W, Toda F. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981; 37: 1532
    • 4b Butters T, Toda F, Winters W. Angew. Chem. Int. Ed. Engl. 1980; 19: 926
    • 5a Gu Z, Vollhardt KP. C. Synthesis 2013; 45: 2469
    • 5b Gu Z, Boursalian GB, Gandon V, Padilla R, Shen H, Timofeeva TV, Tongwa P, Vollhardt KP. C, Yakovenko AA. Angew. Chem. Int. Ed. 2011; 50: 9413
    • 5c Kumaraswamy S, Jalisatgi SS, Matzger AJ, Miljanić O. Š, Vollhardt KP. C. Angew. Chem. Int. Ed. 2004; 43: 3711
  • 6 Berris BC, Hovakeemian GH, Lai Y.-H, Mestdagh H, Vollhardt KP. C. J. Am. Chem. Soc. 1985; 107: 5670

    • For reviews, see:
    • 7a Beck V, O’Hare D. J. Organomet. Chem. 2004; 698: 3920 ; and references cited therein
    • 7b Wadepohl H. Angew. Chem., Int. Ed. Engl. 1992; 31: 247 ; and references cited therein
    • 7c Jonas K. J. Organomet. Chem. 1990; 400: 165
  • 8 Falceto A, Casanova D, Alemany P, Alvarez S. Chem. Eur. J. 2014; 20: 14674

    • For examples, see:
    • 9a Horak KT, Velian A, Day MW, Agapie T. Chem. Commun. 2014; 50:  4427
    • 9b Schneider JJ, Wolf D, Janiak C, Heinemann O, Rust J, Krüger C. Chem. Eur. J. 1998; 4: 1982
    • 9c Schneider JJ, Wolf D. Z. Naturforsch., B: J. Chem. Sci. 1998; 53: 1267
    • 9d Schneider JJ. Z. Naturforsch., B: J. Chem. Sci. 1995; 50: 1055
    • 9e Schneider JJ, Denninger U, Heinemann O, Krüger C. Angew. Chem. Int. Ed. Engl. 1995; 34: 592
    • 9f Müller J, Gaede PE, Qiao K. J. Organomet. Chem. 1994; 480: 213
    • 9g Jonas K, Koepe G, Schieferstein L, Mynott R, Krüger C, Tsay Y.-H. Angew. Chem., Int. Ed. Engl. 1983; 22: 620
  • 10 For the X-ray structure of the parent linear [3]phenylene, see: Schleifenbaum A, Feeder N, Vollhardt KP. C. Tetrahedron Lett. 2001; 42: 7329
  • 11 2,3,7,8-Tetrakis(trimethylsilyl) linear [3]phenylene(CpCo)2 6In a glovebox, 2,3,7,8-tetrakis(trimethylsilyl) linear [3]phenylene(CpCo) 1 (85 mg, 0.133 mmol) and CpCo(C2H4)2 (25 mg, 0.139 mmol) were added to a Schlenk flask. The flask was taken out of the glove box, and freshly distilled degassed benzene (15 mL) was added under N2. The mixture was heated to 70 °C in an oil bath for 23 h and then cooled to r.t. The solvent was removed in vacuo, furnishing a black residue that was filtered rapidly through a plug of neutral alumina (activity III; 2.5 × 3.5 cm), eluting with hexanes–THF (100:1) under N2. The solvents were again removed in vacuo, and the ensuing black residue was crystallized from acetone–EtOAc (100:1) at –78 °C to give reddish-black crystals; yield: 57 mg (56%). 1H NMR (400 MHz, acetone-d 6): δ = 7.36 (s, 4 H), 4.89 (m, 4 H), 4.81 (s, 2 H), 0.39 (s, 36 H). 13C NMR (100 MHz, acetone-d 6): δ = 150.5, 145.4, 125.9, 82.8, 57.1, 53.7, 2.66. MS (FAB): m/z = 762 ([M+]). HRMS (EI, 70 eV): m/z [M+] calcd for C40H52Co2Si4: 762.1810; found: 762.1791. UV/Vis (hexane): λmax (log ε) = 221 (3.36, sh), 244 (3.44), 286 (3.63), 386 (2.79, sh), 439 nm (2.58).