RSS-Feed abonnieren
DOI: 10.1055/a-1525-2588
Islet Co-Expression of CD133 and ABCB5 in Human Retinoblastoma Specimens
Lokalisierte Koexpression von CD133 und ABCB5 in humanen Retinoblastomproben
Abstract
Background The role of CD133 und ABCB5 is discussed in treatment resistance in several types of cancer. The objective of this study was to evaluate whether CD133+/ABCB5+ colocalization differs in untreated, in beam radiation treated, and in chemotherapy treated retinoblastoma specimens. Additionally, CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 gene expression was analyzed in WERI-RB1 (WERI RB1) and etoposide-resistant WERI RB1 subclones (WERI ETOR).
Methods Active human untreated retinoblastoma specimens (n = 12), active human retinoblastoma specimens pretreated with beam radiation before enucleation (n = 8), and active human retinoblastoma specimens pretreated with chemotherapy before enucleation (n = 7) were investigated for localization and expression of CD133 and ABCB5 by immunohistochemistry. Only specimens with IIRC D, but not E, were included in this study. Furthermore, WERI RB1 and WERI ETOR cell lines were analyzed for CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 by the real-time polymerase chain reaction (RT-PCR).
Results Immunohistochemical analysis revealed the same amount of CD133+/ABCB5+ colocalization islets in untreated and treated human retinoblastoma specimens. Quantitative RT-PCR analysis showed a statistically significant upregulation of CD133 in WERI ETOR (p = 0.002). No ABCB5 expression was detected in WERI RB1 and WERI ETOR. On the other hand, SPHK1 (p = 0.0027) and SPHK2 (p = 0.017) showed significant downregulation in WERI ETOR compared to WERI RB1.
Conclusions CD133+/ABCB5+ co-localization islets were noted in untreated and treated human retinoblastoma specimens. Therefore, we assume that CD133+/ABCB5+ islets might play a role in retinoblastoma genesis, but not in retinoblastoma treatment resistance.
Zusammenfassung
Hintergrund Die Rolle von CD133 und ABCB5 in der Therapieresistenz von verschiedenen Tumoren wird aktuell diskutiert. Ziel der Studie war es zu untersuchen, ob Unterschiede in der CD133+/ABCB5+-Kolokalisation bei bestrahlten, mit Chemotherapie behandelten und nicht vorbehandelten Retinoblastomproben bestehen. Zusätzlich wurde die Genexpression von CD133, ABCB5, Sphingosinkinase 1 und Sphingosinkinase 2 in der WERI-RB1-Zelllinie und seinem Etoposid-resistenten Subklon (WERI-ETOR) analysiert.
Methoden Humane unbehandelte (n = 12), mit Bestrahlung vorbehandelte (n = 8) und mit Chemotherapie vorbehandelte (n = 7) enukleierte Augen mit aktivem Retinoblastomgewebe (IIRC D, jedoch nicht E) wurden mittels immunhistologischer Untersuchung auf die Lokalisation und Expression von CD133 und ABCB5 hin analysiert. Weiter wurden die Zelllinien WERI-RB1 und WERI-ETOR mittels Real-Time Polymerase Chain Reaction (RT-PCR) auf die Expression von CD133, ABCB5, Sphingosinkinase 1 und Sphingosinkinase 2 untersucht.
Ergebnisse Die immunohistochemische Analyse zeigte ähnliche Mengen an CD133+/ABCB5+-Kolokalisationsinseln in behandelten und unbehandelten humanen Retinoblastomproben. Die quantitative RT-PCR-Analyse zeigte eine signifikante Hochregulation von CD133 in WERI-ETOR (p = 0,002). Eine ABCB5-Expression konnte weder in WERI-RB1 noch in WERI-ETOR nachgewiesen werden. Sphingosinkinase 1 (p = 0,0027) und Sphingosinkinase 2 (p = 0,017) waren in WERI-ETOR signifikant herunterreguliert.
Schlussfolgerung CD133+/ABCB5+-Kolokalisationsinseln konnten in behandelten und unbehandelten humanen Retinoblastomproben nachgewiesen werden. Wir schließen daraus, dass CD133+/ABCB5+-Zellen eventuell eine Rolle in der Retinoblastomgenese spielen können, aber wohl keinen Einfluss auf die Resistenzentwicklung im Retinoblastom haben.
Publikationsverlauf
Eingereicht: 04. September 2020
Angenommen: 07. Juni 2021
Artikel online veröffentlicht:
27. September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bornfeld N, Lohmann D, Bechrakis NE. et al. Retinoblastom. Ophthalmologe 2020; 117: 389-402
- 2 Fabian ID, Sagoo MS. Understanding retinoblastoma: epidemiology and genetics. Community Eye Health 2018; 31: 7
- 3 Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol 2009; 93: 1129
- 4 Dimaras H, Corson TW. Retinoblastoma, the visible CNS tumor: A review. J Neurosci Res 2019; 97: 29-44
- 5 Dimaras H, Kimani K, Dimba EAO. et al. Retinoblastoma. The Lancet 2012; 379: 1436-1446
- 6 Fabian ID, Onadim Z, Karaa E. et al. The management of retinoblastoma. Oncogene 2018; 37: 1551-1560
- 7 Chawla B, Kumar K, Singh AD. Influence of Socioeconomic and Cultural Factors on Retinoblastoma Management. Asia Pac J Oncol Nurs 2017; 4: 187-190
- 8 Bornfeld N, Holdt M, Biewald E. et al. Neue Entwicklungen zur Genetik und Therapie des Retinoblastoms. Klin Monbl Augenheilkd 2011; 228: 593-598
- 9 Temming P, Eggert A, Bornfeld N. et al. Diagnose und Behandlung des Retinoblastoms: aktuelle Konzepte zur sicheren Tumorkontrolle bei Erhalt des Sehvermögens. Klin Monbl Augenheilkd 2013; 230: 232-242
- 10 Bechrakis NE, Bornfeld N, Schueler A. et al. Clinicopathologic features of retinoblastoma after primary chemoreduction. Arch Ophthalmol 1998; 116: 887-893
- 11 Biewald EM, Bornfeld N, Metz KA. et al. Histopathology of retinoblastoma eyes enucleated after intra-arterial chemotherapy. Br J Ophthalmol 2020; 104: 1171
- 12 Bornfeld N, Schüler A, Bechrakis N. et al. Preliminary results of primary chemotherapy in retinoblastoma. Klin Padiatr 1997; 209: 216-221
- 13 Biewald E, Holdt M, Bornfeld N. Neue Therapiestrategien beim Retinoblastom. Ophthalmologe 2014; 111: 379-382
- 14 Tomar AS, Finger PT, Gallie B. et al. A Multicenter, International Collaborative Study for American Joint Committee on Cancer Staging of Retinoblastoma: Part II: Treatment Success and Globe Salvage. Ophthalmology 2020; 127: 1733-1746
- 15 Nguyen LV, Vanner R, Dirks P. et al. Cancer stem cells: an evolving concept. Nat Rev Cancer 2012; 12: 133-143
- 16 Tan BT, Park CY, Ailles LE. et al. The cancer stem cell hypothesis: a work in progress. Lab Invest 2006; 86: 1203-1207
- 17 Zheng S, Xin L, Liang A. et al. Cancer stem cell hypothesis: a brief summary and two proposals. Cytotechnology 2013; 65: 505-512
- 18 Nunes T, Hamdan D, Leboeuf C. et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19: 4036
- 19 Phi LTH, Sari IN, Yang YG. et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018: 5416923
- 20 Prieto-Vila M, Takahashi RU, Usuba W. et al. Drug Resistance Driven by Cancer Stem Cells and Their Niche. Int J Mol Sci 2017; 18: 2574
- 21 Tang Z, Ma H, Mao Y. et al. Identification of stemness in primary retinoblastoma cells by analysis of stem-cell phenotypes and tumorigenicity with culture and xenograft models. Exp Cell Res 2019; 379: 110-118
- 22 Yue F, Hirashima K, Tomotsune D. et al. Reprogramming of retinoblastoma cancer cells into cancer stem cells. Biochem Biophys Res Commun 2017; 482: 549-555
- 23 Seigel GM, Campbell LM, Narayan M. et al. Cancer stem cell characteristics in retinoblastoma. Mol Vis 2005; 11: 729-737
- 24 Seigel GM, Hackam AS, Ganguly A. et al. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 2007; 13: 823-832
- 25 Balla MMS, Vemuganti GK, Kannabiran C. et al. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci 2009; 50: 1506-1514
- 26 Silva AK, Yi H, Hayes SH. et al. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical Wnt signaling pathway. Mol Vis 2010; 16: 36-45
- 27 Hu H, Deng F, Liu Y. et al. Characterization and retinal neuron differentiation of WERI-Rb1 cancer stem cells. Mol Vis 2012; 18: 2388-2397
- 28 Yin AH, Miraglia S, Zanjani ED. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002-5012
- 29 Miraglia S, Godfrey W, Yin AH. et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997; 90: 5013-5021
- 30 Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2013; 2: 17
- 31 Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7: 18
- 32 Zhong X, Li Y, Peng F. et al. Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. Int J Cancer 2007; 121: 2125-2131
- 33 Nair RM, Balla MM, Khan I. et al. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer 2017; 17: 779
- 34 Angelastro JM, Lamé MW. Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res 2010; 8: 1105-1115
- 35 Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005; 5: 30
- 36 Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014; 20: 793-807
- 37 Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2020; 60: 57-71
- 38 Robey RW, Pluchino KM, Hall MD. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18: 452-464
- 39 Shukla S, Srivastava A, Kumar S. et al. Expression of multidrug resistance proteins in retinoblastoma. Int J Ophthalmol 2017; 10: 1655-1661
- 40 Krishnakumar S, Mallikarjuna K, Desai N. et al. Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 2004; 88: 1521-1526
- 41 Hendig D, Langmann T, Zarbock R. et al. Characterization of the ATP-binding cassette transporter gene expression profile in Y79: a retinoblastoma cell line. Mol Cell Biochem 2009; 328: 85-92
- 42 Wilson MW, Fraga CH, Fuller CE. et al. Immunohistochemical detection of multidrug-resistant protein expression in retinoblastoma treated by primary enucleation. Invest Ophthalmol Vis Sci 2006; 47: 1269-1273
- 43 Ishikawa Y, Nagai J, Okada Y. et al. Function and expression of ATP-binding cassette transporters in cultured human Y79 retinoblastoma cells. Biol Pharm Bull 2010; 33: 504-511
- 44 Mohan A, Kandalam M, Ramkumar HL. et al. Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma. Br J Ophthalmol 2006; 90: 889-893
- 45 Frank NY, Pendse SS, Lapchak PH. et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 2003; 278: 47156-47165
- 46 Wilson BJ, Schatton T, Zhan Q. et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 2011; 71: 5307-5316
- 47 Guo Q, Grimmig T, Gonzalez G. et al. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem 2018; 293: 11166-11178
- 48 Frank NY, Margaryan A, Huang Y. et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65: 4320
- 49 Schatton T, Murphy GF, Frank NY. et al. Identification of cells initiating human melanomas. Nature 2008; 451: 345-349
- 50 Luo Y, Ellis LZ, Dallaglio K. et al. Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. J Invest Dermatol 2012; 132: 2440-2450
- 51 Lin JY, Zhang M, Schatton T. et al. Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk. Biochem Biophys Res Commun 2013; 436: 536-542
- 52 Thill M, Berna MJ, Grierson R. et al. Expression of CD133 and other putative stem cell markers in uveal melanoma. Melanoma Res 2011; 21: 405-416
- 53 Lee CAA, Banerjee P, Wilson BJ. et al. Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem 2020; 295: 7774-7788
- 54 Ksander BR, Kolovou PE, Wilson BJ. et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 2014; 511: 353-357
- 55 Dbaibo GS, Wolff RA, Obeid LM. et al. Activation of a retinoblastoma-protein-dependent pathway by sphingosine. Biochem J 1995; 310 (Pt 2): 453-459
- 56 Kakkassery V, Skosyrski S, Lüth A. et al. Etoposide Upregulates Survival Favoring Sphingosine-1-Phosphate in Etoposide-Resistant Retinoblastoma Cells. Pathol Oncol Res 2019; 25: 391-399
- 57 Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1993; 1154: 223-236
- 58 Wagner W, Ansorge A, Wirkner U. et al. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004; 104: 675-686
- 59 Remmele W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 1987; 8: 138-140
- 60 Westekemper H, Karimi S, Süsskind D. et al. Expression of MCSP and PRAME in conjunctival melanoma. Br J Ophthalmol 2010; 94: 1322
- 61 Stephan H, Boeloeni R, Eggert A. et al. Photodynamic therapy in retinoblastoma: effects of verteporfin on retinoblastoma cell lines. Invest Ophthalmol Vis Sci 2008; 49: 3158-3163
- 62 Mergler S, Cheng Y, Skosyrski S. et al. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 2012; 94: 157-173
- 63 Reinhard J, Wagner N, Krämer MM. et al. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21: 4322
- 64 Vandesompele J, De Preter K, Pattyn F. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002; 3: RESEARCH0034