Synthesis 2021; 53(20): 3791-3798
DOI: 10.1055/a-1521-3166
paper

Electrochemical Aromatization of Dihydroazines: Effect of Chalco­genophosphoryl (CGP) Substituents on Anodic Oxidation of 9-CGP-9,10-dihydroacridine

a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
Tatyana Yu. Shimanovskaya
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
Pavel A. Volkov
b   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
b   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
b   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
a   Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
› Author Affiliations
The research was financially supported by the Russian Foundation for Basic Research (research project No. 19-29-08037). P.V. and A.T. thank the Russian Science Foundation for the financial support (Grant No. 18-73-10080).


Abstract

The effect of chalcogenophosphoryl fragments on the anodic oxidation of 9-chalcogenophosphoryl-9,10-dihydroacridines was studied in detail. The data of X-ray structural analyses, quantum chemical calculations, and cyclic voltammetry measurements obtained for these compounds provide an explanation of the observed features. The direct electrochemical phosphorylation of acridine was first carried out successfully.

Supporting Information



Publication History

Received: 01 March 2021

Accepted after revision: 31 May 2021

Accepted Manuscript online:
31 May 2021

Article published online:
21 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Camidge DR, Kim HR, Ahn M.-J, Yang JC.-H, Han J.-Y, Lee J.-S, Hochmair MJ, Li JY.-C, Chang G.-C, Lee KH, Gridelli C, Delmonte A, Garcia Campelo R, Kim D.-W, Bearz A, Griesinger F, Morabito A, Felip E, Califano R, Ghosh S, Spira A, Gettinger SN, Tiseo M, Gupta N, Haney J, Kerstein D, Popat S. N. Engl. J. Med. 2018; 379: 2027
    • 1b Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
    • 2a Kumar S, Kaushik G, Dar MA, Nimesh S, López-Chukenu IJ, Villarreal-Chiu JF. Pedosphere 2018; 28: 190
    • 2b Németh G, Greff Z, Sipos A, Varga Z, Székely R, Sebestyén M, Jászay Z, Béni S, Nemes Z, Pirat JL, Volle JN, Virieux D, Gyuris Á, Kelemenics K, Áy É, Minarovits J, Szathmary S, Kéri G, Orfi L. J. Med. Chem. 2014; 57: 3939
  • 3 Butkevich AN, Sednev MV, Shojaei H, Belov VN, Hell SW. Org. Lett. 2018; 20: 1261
  • 4 Guo Y, Fu H, Chen H, Li X. Catal. Commun. 2008; 9: 1842
    • 5a Autio J, Vuoti S, Haukka M, Pursiainen J. Inorg. Chim. Acta 2008; 361: 1372
    • 5b Zink DM, Bächle M, Baumann T, Nieger M, Kühn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S. Inorg. Chem. 2013; 52: 2292
    • 5c Chang YC, Chang WC, Hu CY, Hong FE. Organometallics 2014; 33: 3523
    • 5d Cuperly D, Gros P, Fort Y. J. Org. Chem. 2002; 67: 238
    • 6a Zhang HY, Sun M, Ma YN, Tian QP, Yang SD. Org. Biomol. Chem. 2012; 10: 9627
    • 6b Srinivas V, Swamy KC. K. ARKIVOC 2009; (xii): 31
    • 6c De Blieck A, Masschelein KG. R, Dhaene F, Rozycka-Sokolowska E, Marciniak B, Drabowicz J, Stevens CV. Chem. Commun. 2010; 46: 258
    • 7a Deal EL, Petit C, Montchamp JL. Org. Lett. 2011; 13: 3270
    • 7b Johansson T, Stawinski J. Chem. Commun. 2001; 1: 2564
    • 7c Ziessel RF, Charbonnière LJ, Mameri S, Camerel F. J. Org. Chem. 2005; 70: 9835
    • 7d Diesters H, Zhuang R, Xu J, Cai Z, Tang G, Fang M. Org. Lett. 2011; 13: 2110
    • 7e Gerbier P, Guérin C, Henner B, Unal JR. J. Mater. Chem. 1999; 9: 2559
    • 7f Bessmertnykh A, Douaihy CM, Muniappan S, Guilard R. Synthesis 2008; 1575
    • 8a Xiang C.-B, Bian Y.-J, Mao X.-R, Huang Z.-Z. J. Org. Chem. 2012; 77: 7706
    • 8b Terrier F. Modern Nucleophilic Aromatic Substitution . Wiley-VCH; Weinheim: 2013
    • 8c Kagayama T, Nakano A, Sakaguchi S, Ishii Y. Org. Lett. 2006; 8: 407
    • 8d Kim SH, Kim SH, Lim CH, Kim JN. Tetrahedron Lett. 2013; 54: 1697
    • 8e Budnikova YH, Sinyashin OG. Russ. Chem. Rev. 2015; 84: 917
    • 9a Chupakhin ON, Charushin VN. Tetrahedron Lett. 2016; 57: 2665
    • 9b Trofimov BA, Volkov PA, Khrapova KO, Telezhkin AA, Ivanova NI, Albanov AI, Gusarova NK, Chupakhin ON. Chem. Commun. 2018; 54: 3371
    • 9c Khutorianskyi VV, Baris N, Beier P. Org. Chem. Front. 2021; 8: 77
    • 9d Chupakhin ON, Charushin VN, van der Plas HC. Nucleophilic Aromatic Substitution of Hydrogen . Academic Press; New York: 1994
    • 10a Charushin VN, Chupakhin ON. Top. Heterocycl. Chem. 2014; 37: 1
    • 10b Peng P, Peng L, Wang G, Wang F, Luo Y, Lei A. Org. Chem. Front. 2016; 3: 749
  • 11 Gallardo I, Guirado G. Eur. J. Org. Chem. 2008; 2463
    • 12a Chupakhin ON, Shchepochkin AV, Charushin VN, Maiorova AV, Kulikova TV, Shunyaev KY, Enyashin AN, Slepukhin PA, Suvorova AI. Chem. Heterocycl. Compd. 2019; 55: 956
    • 12b Fukuzumi S, Tokuda Y, Kutano T, Okamoto T, Otera J. J. Am. Chem. Soc. 1993; 115: 8960
  • 13 Chupakhin ON, Shchepochkin AV, Charushin VN. Adv. Heterocycl. Chem. 2020; 131: 1
    • 14a Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 14b Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 14c Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 14d Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 14e Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 14f Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 14g Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 15a Yuan Y, Qiao J, Cao Y, Tang J, Wang M, Ke G, Lu Y, Liu X, Lei A. Chem. Commun. 2019; 55: 4230
    • 15b Khrizanforov M, Strekalova S, Khrizanforova V, Dobrynin A, Kholin K, Gryaznova T, Grinenko V, Gubaidullin A, Kadirov MK, Budnikova Y. Top. Catal. 2018; 61: 1949
    • 15c Cruz H, Gallardo I, Guirado G. Eur. J. Org. Chem. 2011; 7378
    • 15d Grayaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova Y. Н. J. Organomet. Chem. 2015; 785: 68
    • 16a Utepova IA, Trestsova MA, Chupakhin ON, Charushin VN, Rempel AA. Green Chem. 2015; 17: 4401
    • 16b Chupakhin ON, Shchepochkin AV, Charushin VN. Green Chem. 2017; 19: 2931
    • 16c Shchepochkin AV, Chupakhin ON, Charushin VN, Steglenko DV, Minkin VI, Rusinov GL, Matern AI. RSC Adv. 2016; 6: 77834
  • 17 Volkov PA, Khrapova KO, Telezhkin AA, Ivanova NI, Albanov AI, Gusarova NK, Trofimov BA. Org. Lett. 2018; 20: 7388
  • 18 Neese F. WIREs Comput. Mol. Sci. 2012; 2: 73
    • 19a Knizia G, Klein JE. M. N. Angew. Chem. Int. Ed. 2015; 54: 5518
    • 19b Knizia G. J. Chem. Theory Comput. 2013; 9: 4834
    • 20a Artem’ev AV, Malysheva SF, Gusarova NK, Korocheva AO, Timokhina LV, Trofimov BA. Russ. Chem. Bull. 2013; 62: 2495
    • 20b Gusarova NK, Trofimov BA. Russ. Chem. Rev. 2020; 89: 225
  • 21 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
  • 22 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112