Synlett 2021; 32(13): 1253-1259
DOI: 10.1055/a-1493-9489
synpacts

Enantioselective Functionalization of Prochiral Cyclobutanones and Cyclobutenones

Meng Wang
,
Changxu Zhong
,
Ping Lu
This work was supported by the National Natural Science Foundation of China (Grant Numbers 21772024 and 21921003).


Abstract

Enantioselective synthesis of cyclobutane derivatives is still a challenging topic in asymmetric synthesis. [2+2] Cycloaddition and skeleton rearrangement are two primary strategies to this end. Recently, functionalization of cyclobutanones and cyclobutenones, which are readily available via [2+2] cycloadditions as prochiral substrates, has emerged as a powerful tool to access versatile four-membered ring compounds. Herein, we summarize some recent advances in these areas from our and other groups.

1 Introduction

2 Enantioselective Functionalization of Cyclobutanones

2.1 Chiral Lithium Amide Approach

2.2 Enamine Approach

3 Enantioselective Functionalization of Cyclobutenones

4 Conclusion



Publication History

Received: 01 April 2021

Accepted after revision: 28 April 2021

Accepted Manuscript online:
28 April 2021

Article published online:
25 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
    • 2b Xu Y, Conner ML, Brown KM. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 2c Wang M, Lu P. Org. Chem. Front. 2018; 5: 254
    • 2d Poplata S, Tröster A, Zou Y, Bach T. Chem. Rev. 2016; 116: 9748
  • 3 Secci F, Frongia A, Piras PP. Molecules 2013; 18: 15541
  • 5 3-Oxocyclobutanecarboxylic acid [CAS Reg. No. 23761-23-1] : ¥ 3,532/500 g, bidepharm.
    • 7a Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
    • 7b Danheiser RL, Brisbois RG, Kowalczyk JJ, Miller RF. J. Am. Chem. Soc. 1990; 112: 3093
    • 9a Simpkins NS, Weller MD. Org. React. 2013; 79: 317
    • 9b Harrison-Marchand A, Maddaluno J. In Lithium Compounds in Organic Synthesis: From Fundamentals to Applications . Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014: 297
    • 10a Honda T, Kimura N, Tsubuki M. Tetrahedron: Asymmetry 1993; 4: 1475
    • 10b Honda T, Kimura N, Sato S, Kato D, Tominaga H. J. Chem. Soc., Perkin Trans. 1 1994; 1043
    • 10c Honda T, Kimura NJ. Chem. Soc., Chem. Commun. 1994; 77
  • 11 Aggarwal VK, Humphries PS, Fenwick A. Angew. Chem. Int. Ed. 1999; 38: 1985
  • 12 Zhong C, Wang S, Lu P. Org. Chem. Front. . 2021 8. in press DOI: 10.1039/d1qo00015b
  • 13 Majewski M, lrvine NM, MacKinnon J. Tetrahedron: Asymmetry 1995; 6: 1837
    • 14a Dolbier WR, Koroniak H, Houk KN, Sheu C. Acc. Chem. Res. 1996; 29: 471
    • 14b Murakami M, Miyamoto Y, Ito Y. Angew. Chem. Int. Ed. 2001; 40: 189
    • 15a Dalko PI. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 3. Wiley-VCH; Weinheim: 2013
    • 15b Torres RR. Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes. John Wiley & Sons; Hoboken: 2013
    • 15c Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 15d Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 15e Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 16a Cobb AJ. A, Shaw DM, Ley SV. Synlett 2004; 558
    • 16b Kotrusz P, Toma S, Schmalz H, Adler A. Eur. J. Org. Chem. 2004; 1577
  • 17 Aitken DJ, Capitta F, Frongia A, Gori D, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Synlett 2011; 712
    • 18a Aitken DJ, Bernard AM, Capitta F, Frongia A, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Org. Biomol. Chem. 2012; 10: 5045
    • 18b Capitta F, Frongia A, Ollivier J, Aitken DJ, Secci F, Piras PP, Guillot R. Synlett 2015; 26: 123
  • 20 Wang M, Chen J, Chen Z, Zhong C, Lu P. Angew. Chem. Int. Ed. 2018; 57: 2707
  • 21 Chang S, Holmes M, Mowat J, Meanwell M, Britton R. Angew. Chem. Int. Ed. 2017; 56: 748
    • 22a Shen H, Zhang L, Chen S, Feng J, Zhang B, Zhang Y, Zhang X, Wu Y, Gong L. ACS Catal. 2019; 9. 791
    • 22b Wei C, Ye X, Xing Q, Hu Y, Xie Y, Shi X. Org. Biomol. Chem. 2019; 17: 6607
    • 23a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 23b Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
  • 24 Xia J, Nie Y, Yang G, Liu Y, Gridnev ID, Zhang W. Chin. J. Chem. 2018; 36: 6
    • 25a Xiao K, Lin DW, Miura M, Zhu R, Gong W, Wasa M, Yu J. J. Am. Chem. Soc. 2014; 136: 8138
    • 25b He J, Shao Q, Wu Q, Yu J. J. Am. Chem. Soc. 2017; 139: 3344
    • 25c Chen X, Chen L, Zhao H, Gao Q, Shen Z, Xu S. Chin. J. Chem. 2020; 38: 1533
    • 25d Wu Q, Wang X, Shen P, Yu J. ACS Catal. 2018; 8: 2577
  • 26 Misale A, Niyomchon S, Maulide N. Acc. Chem. Res. 2016; 49: 2444
  • 27 Guisán-Ceino M, Parr A, Martín-Hera V, Tortos M. Angew. Chem. Int. Ed. 2016; 55: 6969
  • 28 Feng S, Hao H, Liu P, Buchwald SL. ACS Catal. 2020; 10: 282
  • 29 Chen Y, Hu T, Feng C, Lin G. Chem. Commun. 2015; 51: 8773
  • 30 Zhong C, Huang Y, Zhang H, Zhou Q, Liu Y, Lu P. Angew. Chem. Int. Ed. 2020; 59: 2750
    • 31a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 31b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
    • 32a Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
    • 32b Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
  • 33 Clement HA, Boghi M, McDonald RM, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Angew. Chem. Int. Ed. 2019; 58: 18405