Synthesis 2021; 53(15): 2693-2701
DOI: 10.1055/a-1472-7578
paper

N-p-Toluenesulfinylimidazole: A New in situ Reagent for the Mild and Efficient Synthesis of p-Toluenesulfinate Alkyl Esters and Aryl Esters

Jessica L. Shaw
,
Brad J. Austermuehle
,
Jordan M. Witte
,
Timothy R. Dorsey
,
Christina Delach
,
Christopher G. Hamaker
,
Shawn R. Hitchcock
Acknowledgment is made to the National Science Foundation (NSF) for SC-XRD (CHE-1039689) analyses from Departmental instrumentation obtained from the Major Research Instrumentation (MRI) program.


Abstract

A new synthetic methodology has been developed for the synthesis of sulfinate alkyl and aryl esters. The methodology involves the combination of p-toluenesulfinic acid and 1,1′-carbonyldiimidazole (CDI) to create the putative reagent sulfinylimidazole. The process spontaneously releases carbon dioxide upon the addition of the CDI to the acid suggesting the rapid formation of the proposed reagent. Reaction of this reagent with a series of alcohols (primary, secondary, and tertiary) afforded the corresponding sulfinate alkyl esters in good to excellent yields by the addition of alcohols. It was also possible to form the related sulfinate aryl esters by treating the proposed sulfinylimidazole with selected phenols (phenol, p-tert-butylphenol, and thymol). The aryl esters were formed in excellent conversion based on analysis of the 500 MHz 1H NMR spectra of the crude reaction mixtures.

Supporting Information



Publication History

Received: 09 March 2021

Accepted after revision: 01 April 2021

Accepted Manuscript online:
01 April 2021

Article published online:
19 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wojaczyńska E, Wojaczyński J. Chem. Rev. 2020; 120: 4578
    • 2a Kaboudin B, Behrouzi L, Kazemi F, Najafpour MM, Aoyama H. ACS Omega 2020; 5: 17947
    • 2b He Y, Zhang J, Xu L, Wei Y. Tetrahedron Lett. 2020; 61: 151631
    • 3a Ji Y.-Z, Li H.-J, Zhang J.-Y, Wu Y.-C. Eur. J. Org. Chem. 2019; 1846
    • 3b Reddy MA, Reddy PS, Sreedhar B. Adv. Synth. Catal. 2010; 352: 1861
    • 3c Huang M, Hu L, Shen H, Liu Q, Hussain MI, Pan J, Xiong Y. Green Chem. 2016; 18: 1874
  • 5 Gafur SH, Waggoner SL, Jacobsen E, Hamaker CG, Hitchcock SR. Synthesis 2018; 50: 4855
  • 6 Hajipour AR, Falahati AR, Ruoho AE. Tetrahedron Lett. 2006; 47: 2717
    • 7a Pogaku N, Krishna PR, Prapurna YL. Synth. Commun. 2017; 47: 1239
    • 7b Kadari L, Krishna PR, Prapurna YL. Adv. Synth. Catal. 2016; 358: 3863
  • 8 Wei J, Sun Z. Org. Lett. 2015; 17: 5396
  • 9 Shyam PK, Kim YK, Lee C, Jang H.-Y. Adv. Synth. Catal. 2016; 358: 56
  • 10 Tranquilino A, Andrade RC. P, da Silva AP. M, Menezes PH, Oliveira RA. Tetrahedron Lett. 2017; 58: 1265
  • 11 Jacobsen E, Chavda MK, Zikpi KM, Waggoner SL. Tetrahedron Lett. 2017; 58: 3073
  • 12 Paul R, Anderson GW. J. Am. Chem. Soc. 1960; 82: 4596
  • 13 Engstrom KM. Org. Process Res. Dev. 2018; 22: 1294
  • 14 Metro T.-X, Martinez J, Lamaty F. ACS Sustainable Chem. Eng. 2017; 5: 9599
  • 15 Woodman EK, Chaffey JG. K, Hopes PA, Hose DR. J, Gilday JP. Org. Process Res. Dev. 2009; 13: 106
  • 16 Couturier M, Le T. Org. Process Res. Dev. 2006; 10: 534
  • 17 Larrivée-Aboussafy C, Jones BP, Price KE, Hardink MA, McLaughlin RW, Lillie BM, Hawkins JM, Vaidyanathan R. Org. Lett. 2010; 12: 324
  • 18 Boie C, Hoppe D. Synthesis 1997; 176
  • 19 O’Donnell MJ, Polt RL. J. Org. Chem. 1982; 47: 2663
    • 20a Seki H, Xue S, Pellet S, Silhar P, Johnson EA, Janda KD. J. Am. Chem. Soc. 2016; 138: 5568
    • 20b Malwal SR, Labade A, Andhalkar AS, Sengupta L, Chakrapani H. Chem. Commun. 2014; 50: 11533
    • 20c Senatore L, Ciuffarin E, Fava A, Levita G. J. Am. Chem. Soc. 1973; 95: 2918
  • 21 Yang Y. Side Reactions in Peptide Synthesis . Academic Press; New York: 2015: 95-118