Klin Monbl Augenheilkd 2021; 238(04): 437-442
DOI: 10.1055/a-1440-0642
Klinische Studie

Slowing Down Myopia Progression with Contact Lenses – Everyday Cases from the Clinic

Verlangsamung der Myopieprogression mit Kontaktlinsen – Alltagsfälle aus der Klinik
Ana Paula Ribeiro Reis
Ophthalmology, Universitätsspital Basel Augenklinik, Basel, Switzerland
,
Ophthalmology, Universitätsspital Basel Augenklinik, Basel, Switzerland
,
Ralf Beuschel
Ophthalmology, Universitätsspital Basel Augenklinik, Basel, Switzerland
› Author Affiliations

Abstract

Background An estimated 49.8% of the world population will be myopic by 2050. Multifocal contact lenses (MFCLs) and orthokeratology (OK) reduce peripheral retinal hyperopic defocus, which animal studies have shown to positively impact eye growth. MFCLs are expected to slow myopic progression by 20 – 50% and OK by 30 – 60%, making them valuable therapeutic tools. In view of the guidelines for myopia management published by the International Myopia Institute in 2019, the aim of this retrospective data analysis of a tertiary care center was to review past experience with OK and MFCLs for myopia control and gain information to update current practice.

Patients and Methods The contact lens (CL) database of the Eye Clinic of the University Hospital of Basel was searched with the label “myopia progression” between January 2012 – 2020. Patients were included if they gave informed consent, were younger than 19 years old at baseline, and had no ocular comorbidities that could potentially compromise vision. Primary outcomes were progression of spherical equivalent refraction for MFCL patients and progression of axial length (AL) for the OK group, comparing with historical data from OK trials. Secondary outcomes were the presence of risk factors for myopia, age, refractive error at baseline, follow-up duration, and adverse effects during therapy.

Results Twenty-one patients could be included, with a mean age of 12.80 ± 3.32 years (y) at baseline. The majority of patients were older than 12 years and already myopic (− 3.89 ± 2.30 diopters) when control treatment was started. Overall, follow-up ranged from 0.08 to 6.33 years (2.03 ± 1.66 y). In the patients treated with MFCLs, myopia control improved significantly when patients changed from spectacles to MFCLs. In the OK group, 14% dropped out during the first year and 2 patients had multiple AL measurements during therapy, which showed a slower growth of AL when compared to other OK trials and controls with spectacles. There were two cases of non-severe keratitis. Environmental risk factors had not been documented and only 48% of clinical records had a documented family risk assessment.

Conclusion Patients showed a slower myopia progression under MFCLs or OK, which supports their role as a treatment option in myopia management. In this regard, AL measurement is an important additional parameter to be included in the assessment of myopia progression in clinical practice. Identification of children at risk of developing high/pathologic myopia (family history, environmental risk factors) needs to improve so that the first stages of myopic shift can be recognized and targeted. Changes in lifestyle should be actively encouraged, especially when the impact of decreases in outdoor time secondary to COVID-19 is yet to become clear.

Zusammenfassung

Hintergrund Circa 49,8% der Weltbevölkerung wird bis 2050 myop. Multifokale Kontaktlinsen (MFCLs) und Orthokeratologie (OK) reduzieren die hyperope Defokussierung in der Peripherie der Netzhaut, was sich gemäß Tierstudien positiv auf das myope Augenwachstum auswirken soll. MFCLs sollen das Fortschreiten der Myopie um 20 – 50% verlangsamen und OK um 30 – 60%. In Anbetracht der Richtlinien für das Myopiemanagement, die 2019 vom International Myopia Institute herausgegeben wurden, ist das Ziel dieser retrospektiven Datenanalyse eines tertiären Versorgungszentrums, frühere Erfahrungen mit OK und MFCLs für Myopiekontrolle zu sammeln und diskutieren.

Patienten und Methoden Die Kontaktlinsendatenbank (CL) der Augenklinik des Universitätsspitals Basel wurde mit dem Label „Myopieprogression“ zwischen Januar 2012 – 2020 durchsucht. Patienten wurden eingeschlossen, wenn die Einverständniserklärung vohanden war, wenn die Patienten zur Baseline unter 19 Jahre alt waren und keine okularen Komorbiditäten, die das Sehvermögen beeinträchtigen könnten, hatten. Primäre Endpunkte waren das Fortschreiten der sphärischen äquivalenten Refraktion für MFCL-Patienten und Fortschreiten der axialen Länge (AL) für die OK-Gruppe im Vergleich mit historischen Daten aus OK-Trials. Sekundäre Endpunkte waren Risikofaktoren für Myopie, Alter, Refraktion bei Baseline, Follow-up-Dauer und Nebenwirkungen während der Therapie.

Ergebnisse 21 Patienten wurden eingeschlossen. Bei Baseline waren sie 12,80 ± 3,32 Jahre alt (y). Die Mehrheit der Patienten war älter als 12 Jahre und bereits myop (− 3,89 ± 2,30 D), als die Myopiebehandlung mit Kontaktlinsen begonnen wurde. Insgesamt lag das Follow-up zwischen 0,08 und 6,33 Jahren (2,03 ± 1,66 Jahre). Bei den mit MFCL behandelten Patienten verbesserte sich die Myopieprogression. In der OK-Gruppe hörten 14% mit der Therapie im 1. Jahr auf. Zwei OK-Patienten hatten mehrere AL-Messungen während der Therapie, welche ein langsameres Wachstum von AL zeigte im Vergleich zu anderen OK-Trials. Insgesamt gab es 2 Fälle von nicht schwerer Keratitis. Umweltrisikofaktoren wurden nicht dokumentiert und nur bei 48% der klinischen Akten wurden die familiären Risikofaktoren bewertet.

Schlussfolgerung Die Patienten zeigten ein langsameres Fortschreiten der Myopie unter MFCLs oder OK, was ihre Rolle im Myopiemanagement unterstützt. Die AL-Messung ist ein wichtiger Parameter, der aufgenommen werden muss für die Beurteilung des Fortschreitens der Myopie im klinischen Alltag. Die Identifizierung von Kindern mit einem hohen Risiko für eine Myopia magna (Familienanamnese, Umweltrisikofaktoren) muss verbessert werden, sodass die Prämyopiephase erkannt und die Therapie früh begonnen wird. Änderungen im Lebensstil sollten aktiv gefördert werden, vor allem, wenn die Auswirkungen der zunehmenden Screening-Zeit nach COVID-19 noch nicht klar sind.



Publication History

Received: 23 September 2020

Accepted: 09 March 2021

Article published online:
30 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Holden BA, Fricke TR, Wilson DA. et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016; 123: 1036-1042
  • 2 Resnikoff S, Jonas JB, Friedman D. et al. Myopia – A 21st century public health issue. Invest Ophthalmol Vis Sci 2019; 60: Mi-Mii
  • 3 Mccarty CA, Taylor HR. Myopia and vision 2020. Am J Ophthalmol 2000; 129: 525-527
  • 4 Wolffsohn JS, Flitcroft DI, Gifford KL. et al. IMI – Myopia control reports overview and introduction. Invest Ophthalmol Vis Sci 2019; 60: M1-M19
  • 5 Troilo D, Smith EL, Nickla DL. et al. Imi – Report on Experimental Models of Emmetropization and myopia. Invest Ophthalmol Vis Sci 2019; 60: M31-M88
  • 6 Wildsoet CF, Chia A, Cho P. et al. IMI – Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Invest Ophthalmol Vis Sci 2019; 60: M106-M131
  • 7 Tideman JWL, Polling JR, Vingerling JR. et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol 2018; 96: 301-309
  • 8 Prousali E, Haidich AB, Fontalis A. et al. Efficacy and safety of interventions to control myopia progression in children: an overview of systematic reviews and meta-analyses. BMC Ophthalmol 2019; 19: 1-17
  • 9 Pauné J, Morales H, Armengol J. et al. Myopia Control with a Novel Peripheral Gradient Soft Lens and Orthokeratology: A 2-Year Clinical Trial. Biomed Res Int 2015; 2015: 507572
  • 10 Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol 2009; 93: 1181-1185
  • 11 Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 2011; 52: 2170-2174
  • 12 McCullough S, Adamson G, Breslin KMM. et al. Axial growth and refractive change in white European children and young adults: predictive factors for myopia. Sci Rep 2020; 10: 15189
  • 13 Tideman JWL, Snabel MCC, Tedja MS. et al. Association of Axial Length with Risk Of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmol 2016; 134: 1355-1363
  • 14 Breslin KMM, OʼDonoghue L, Saunders KJ. A prospective study of spherical refractive error and ocular components among Northern Irish schoolchildren (the NICER study). Invest Ophthalmol Vis Sci 2013; 54: 4843-4850
  • 15 Wolffsohn JS, Kollbaum PS, Berntsen DA. et al. IMI – Clinical Myopia Control Trials and Instrumentation Report. Invest Ophthalmol Vis Sci 2019; 60: M132-M160
  • 16 Mutti DO, Hayes JR, Mitchell GL. et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol 2007; 47: 2510-2519
  • 17 Flitcroft DI, He M, Jonas JB. et al. IMI – Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Invest Ophthalmol Vis Sci 2019; 60: M20-M30
  • 18 Lee KE, Klein BEK, Klein R. et al. Aggregation of refractive error and 5-year changes in refractive error among families in the Beaver Dam eye study. Arch Ophthalmol 2001; 119: 1679-1685
  • 19 Dirani M, Chamberlain M, Shekar SN. et al. Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci 2006; 47: 4756-4761
  • 20 Mutti DO, Mitchell GL, Moeschberger ML. et al. Parental myopia, near work, school achievement, and childrenʼs refractive error. Invest Ophthalmol Vis Sci 2002; 43: 3633-3640
  • 21 Jones-Jordan LA, Sinnott LT, Graham ND. et al. The contributions of near work and outdoor activity to the correlation between siblings in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study. Invest Ophthalmol Vis Sci 2014; 55: 6333-6339
  • 22 Ramessur R, Williams KM, Hammond CJ. Risk factors for myopia in a discordant monozygotic twin study. Ophthalmic Physiol Opt 2015; 35: 643-651
  • 23 Rudnicka AR, Kapetanakis VV, Wathern AK. et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol 2016; 100: 882-890
  • 24 Chua SYL, Sabanayagam C, Cheung YB. et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol Opt 2016; 36: 388-394
  • 25 Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: A 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53: 7077-7085
  • 26 Li SM, Kang MT, Wu SS. et al. Efficacy, Safety and Acceptability of Orthokeratology on Slowing Axial Elongation in Myopic Children by Meta-Analysis. Curr Eye Res 2016; 41: 600-608
  • 27 Pomeda AR, Pérez-Sánchez B, Cañadas Suárez MDP. et al. MiSight Assessment Study Spain: A Comparison of Vision-Related Quality-of-Life Measures Between MiSight Contact Lenses and Single-Vision Spectacles. Eye Contact Lens 2017; 44: 99-104
  • 28 Bullimore MA, Sinnott LT, Jones-Jordan LA. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 2013; 90: 937-944
  • 29 Chalmers RL, Wagner H, Mitchell GL. et al. Age and other risk factors for corneal infiltrative and inflammatory events in young soft contact lens wearers from the Contact Lens Assessment in Youth (CLAY) study. Invest Ophthalmol Vis Sci 2011; 52: 6690-6696
  • 30 Wong CW, Tsai A, Jonas JB. et al. Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom?. Am J Ophthalmol 2021; 223: 333-337
  • 31 Wang J, Li Y, Musch DC. et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmol 2021; 139: 293-300