Synlett 2021; 32(10): 955-961
DOI: 10.1055/a-1353-7605
synpacts

Asymmetric Synthesis of α-Alkylated γ-Lactam via Nickel/8-Quinim-Catalyzed Reductive Alkyl-Carbamoylation of Unactivated Alkene

Xianqing Wu
,
Mohini Shrestha
,
Yifeng Chen
This work was supported by NSFC/China (21702060), Shanghai Rising-Star Program, Shanghai Municipal Science and Technology Major Project Grant No.2018SHZDZX03) and the Program of Introducing Talents of Discscipline to Universities (B16017), and the Fundamental Research Funds for the Central Universities.


Abstract

Chiral-auxiliary-mediated synthesis represents the most frequently used synthetic tool for the induction of chirality on α-position of γ-lactams in organic synthesis. However, the general strategy requires the stoichiometric use of chiral reagents with multiple manipulation steps. Transition-metal-catalyzed asymmetric alkene dicarbofunctionalization using readily available substrates under mild conditions allows the simultaneous construction of two vicinal chemical bonds and a chiral carbon center, hence, gain expedient access to chiral heterocycles. Herein, we disclose a Ni-catalyzed enantioselective reaction of 3-butenyl carbamoyl chloride and primary alkyl iodide enabled by a newly designed chiral 8-quinoline imidazoline ligand (8-Quinim). This protocol features broad functional group tolerance and high enantioselectivities, achieving unprecedented synthesis of chiral nonaromatic heterocycles via catalytic reductive protocol.

1 Introduction

2 Development of 8-Quinim Ligand

3 Nickel/8-Quinim-Catalyzed Enantioselective Synthesis of Chiral α-Alkylated γ-Lactam

4 Conclusion and Outlook



Publication History

Received: 05 January 2021

Accepted after revision: 14 January 2021

Accepted Manuscript online:
14 January 2021

Article published online:
03 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on γ-lactam, see:
    • 1a Ye L.-W, Shu C, Gagosz F. Org. Biomol. Chem. 2014; 12: 1833
    • 1b Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 1c Pandey G, Mishra A, Khamrai J. Tetrahedron 2018; 74: 4903

      For selected examples of chiral α-alkylated γ-lactams synthesis, see:
    • 2a Hayashi M, Bachman S, Hashimoto S, Eichman CC, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 8997
    • 2b Chen C, Jin S, Zhang Z, Wei B, Wang H, Zhang K, Lv H, Dong X.-Q, Zhang X. J. Am. Chem. Soc. 2016; 138: 9017
    • 2c Wang C, Ge S. J. Am. Chem. Soc. 2018; 140: 10687
    • 2d Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
    • 2e Jette C, Geibel I, Bachman S, Hayashi M, Sakurai S, Shimizu H, Morgan JB, Stoltz B. Angew. Chem. Int. Ed. 2019; 58: 4297
    • 2f Park Y, Chang S. Nat. Catal. 2019; 2: 219
    • 2g Xing Q, Chan C.-M, Yeung Y.-W, Yu W.-Y. J. Am. Chem. Soc. 2019; 141: 3849
    • 2h Wang H, Park Y, Bai Z, Chang S, He G, Chen G. J. Am. Chem. Soc. 2019; 141: 7194
    • 2i Bartoszewicz A, Matire CD, Fu GC. J. Am. Chem. Soc. 2019; 141: 14864
    • 2j Ashida K, Hoshimoto Y, Tohnai N, Scott DE, Ohashi M, Imaizumi H, Tsuchiya T, Ogoshi S. J. Am. Chem. Soc. 2020; 142: 1594
    • 2k Biegasiewicz KF, Copper SJ, Gao X, Oblinsky DG, Kim JH, Garfinkle SE, Joyce LA, Sandoval BA, Scholes GD, Hyster TK. Science 2019; 364: 1166
    • 2l Ren X, Chandgude AL, Fasan R. ACS Catal. 2020; 10: 2308
  • 3 Meyers AI, Knaus G, Kamata K, Ford ME. J. Am. Chem. Soc. 1976; 98: 567
  • 4 Enders D, Grobner R, Raabde G, Jan R. Synthesis 1996; 941
    • 5a Dragovich PS, Prins TJ, Zhou R, Webber SE, Marakovits JT, Fuhrman SA, Patick AK, Matthews DA, Lee CA, Ford CE, Burke BJ, Rejto PA, Hendrickson TF, Tuntland T, Brown EL, Meador JW. III, Ferre RA, Harr JE, Kosa MB, Worland ST. S. J. Med. Chem. 1999; 42: 1213
    • 5b Boy KM, Guernon JM, Shi J, Toyn JH, Meredith JE, Barten DM, Burton CR, Albright CF, Marcinkeviciene J, Good AC, Tebben AJ, Muckelbauer JK, Camac DM, Lentz KA, Bronson JJ, Olson RE, Macor JE, Thompson LA. III. Bioorg. Med. Chem. Lett. 2011; 21: 6916
    • 5c Meissner RS, Perkins JJ, Duong LT, Hartman GD, Hoffman WF, Huff JR, Ihle NC, Leu Ch.-T, Nagy RM, Naylor-Olsen A, Rodan GA, Rodan SB, Whitman DB, Wesolowski GA, Duggan ME. Bioorg. Med. Chem. Lett. 2002; 12: 25
    • 5d Satoh N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 3028
    • 5e Procopiou PA, Anderson NA, Barrett J, Barrett TN, Crawford MH. J, Fallon BJ, Hancock AP, Le J, Lemma S, Marshall RP, Morrell J, Pritchard JM, Rowedder JE, Saklatvala P, Slack RJ. Sollis S. L, Suckling CJ, Thorp LR, Vituli G, Macdonald SJ. F. J. Med. Chem. 2018; 61: 8417
  • 6 Matsuo J, Kobayashi S, Koga K. Tetrahedron 1998; 39: 9723
    • 7a Liu X, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2014; 53: 1901
    • 7b Liu X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2014; 53: 1978
    • 7c Angell PT, Lewandowski B, Littler BJ, Nugent WA, Smith D, Studley J. WO201928228A1, 2019
    • 8a Yasui Y, Kamisaki H, Ishida T, Takemoto Y. Tetrahedron 2010; 66: 1980
    • 8b Dreis AM, Otte SC, Eastwood MS, Alonzi ER, Brethorst JT, Douglas CJ. Eur. J. Org. Chem. 2017; 45
  • 9 Donets PA, Cramer N. J. Am. Chem. Soc. 2013; 135: 11772
  • 10 Toreli A, Whyte A, Polishchuk I, Bajohr J, Lautens M. Org. Lett. 2020; 22: 7915
  • 11 Li Y, Zhang F.-P, Wang R.-H, Qi S.-L, Luan Y.-X, Ye M. J. Am. Chem. Soc. 2020; 142: 19844

    • For Ni-catalyzed reductive coupling reviews, see:
    • 12a Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 12b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
    • 12c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 12d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 12e Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
    • 12f Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237

      For recent examples on Ni-catalyzed asymmetric intra- and intermolecular reductive difunctionalization of alkenes, see:
    • 13a Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
    • 13b Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
    • 13c Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
    • 13d Peng Y, Wang K, Pan Q, Ding Z, Zhou Z, Guo Y, Kong W. ACS Catal. 2019; 9: 7335
    • 13e Li Y, Ding Z, Lei A, Kong W. Org. Chem. Front. 2019; 6: 3305
    • 13f Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127
    • 13g Jin Y, Yang H, Wang C. Org. Lett. 2019; 21: 7602
    • 13h He J, Xue Y, Han B, Zhang C, Wang Y, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 2328
    • 13i Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
    • 13j Lan Y, Wang C. Commun. Chem. 2020; 3: 45
    • 13k Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
    • 13l Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
    • 13m Wei X, Shu W. J. Am. Chem. Soc. 2020; 142: 13515
    • 13n Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390

      For selected examples on racemic transformation of alkene-tethered carbamoyl chlorides, see:
    • 14a Fielding MR, Grigg R, Urch CJ. Chem. Commun. 2000; 2239
    • 14b Hande SM, Nakajima M, Kamisaki H, Tsukano C, Takemoto Y. Org. Lett. 2011; 13: 1828
    • 14c Kamisaki H, Yasui Y, Takemoto Y. Tetrahedron Lett. 2009; 50: 2589
    • 14d Chen C, Hu J, Su J, Tong X. Tetrahedron Lett. 2014; 55: 3229
    • 14e Sun W, Chen C, Qi Y, Zhao J, Bao Y, Zhu B. Org. Biomol. Chem. 2019; 17: 8358
    • 14f Wu X, Tang Z, Zhang C, Wang C, Wu L, Qu J, Chen Y. Org. Lett. 2020; 22: 3915
    • 14g Zhang C, Wu X, Wang C, Zhang C, Qu J, Chen Y. Org. Lett. 2020; 22: 6378
    • 14h Wang C, Zhao W, Wu X, Qu J, Chen Y. Adv. Synth. Catal. 2020; 362: 4996
    • 14i Yang F, Sun W, Meng H, Chen M, Chen C, Zhu B. Org. Chem. Front. 2021; 8: 283

      For selected examples for transition-metal-catalyzed enantioselective difunctionalization of activated alkene tethered on carbamoyl chloride, see:
    • 15a Whyte A, Burton KI, Zhang J, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 13927
    • 15b Marchese AD, Wollenburg M, Mirabi B, Abel-Snape X, Whyte A, Glorius F, Lautens M. ACS Catal. 2020; 10: 4780
    • 15c Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
    • 15d Lan Y, Wang C. Commun. Chem. 2020; 3: 45
    • 16a Weng Y, Zhang C, Tang Z, Shrestha M, Huang W, Qu J, Chen Y. Nat. Commun. 2020; 11: 392
    • 16b Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Org. Lett. 2020; 22: 3245
    • 16c Wang Y, Huang W, Wang C, Qu J, Chen Y. Org. Lett. 2020; 22: 4245
  • 17 Xi Y, Wang C, Zhang Q, Qu J, Chen Y. Angew. Chem. Int. Ed. 2021; 60: 2699
  • 18 Yang G, Zhang W. Chem. Soc. Rev. 2018; 47: 1783
  • 19 Wu X.-Y, Li X.-H, Zhou Q.-L. Tetrahedron: Asymmetry 1998; 9: 4143
  • 20 Li X.-G, Cheng X, Ma J.-A, Zhou Q.-L. J. Organomet. Chem. 2001; 640: 65
  • 21 Li Z.-P, Wu X.-Y, Zhou Q.-L, Chan W.-L. Chin. J. Chem. 2001; 19: 40
  • 22 Li J, Yu B, Lu Z. Chin. J. Chem. 2021; 39: 488
  • 23 Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
  • 24 Wu X, Qu J, Chen Y. J. Am. Chem. Soc. 2020; 142: 15654