Fortschr Neurol Psychiatr 2020; 88(12): 778-785
DOI: 10.1055/a-1300-2162
Übersichtsarbeit

Präzisionspsychiatrie und der Beitrag von Brain Imaging und anderen Biomarkern

David Popovic
1   Klinikum der Universität München, Klinik und Poliklinik für Psychiatrie und Psychotherapie
2   International Max Planck Research School for Translational Psychiatry
,
Kolja Schiltz
1   Klinikum der Universität München, Klinik und Poliklinik für Psychiatrie und Psychotherapie
,
Peter Falkai
1   Klinikum der Universität München, Klinik und Poliklinik für Psychiatrie und Psychotherapie
2   International Max Planck Research School for Translational Psychiatry
,
Nikolaos Koutsouleris
1   Klinikum der Universität München, Klinik und Poliklinik für Psychiatrie und Psychotherapie
2   International Max Planck Research School for Translational Psychiatry
› Institutsangaben

Zusammenfassung

Die Präzisionspsychiatrie stellt die psychiatrische Variante des übergeordneten Konzepts der Präzisionsmedizin dar. Hierbei soll eine auf Biomarkern basierte und auf die individuelle klinische, neurobiologische und genetische Konstitution des Patienten zugeschnittene Diagnostik und Behandlung angeboten werden. Die spezifische Eigenheit des Fachs Psychiatrie, in der die Krankheitsentitäten normativ anhand klinischer Erfahrungswerte definiert und damit auch maßgeblich durch zeitgeschichtliche, gesellschaftliche und philosophische Einflüsse geprägt sind, hat bisher die Suche nach psychobiologischen Zusammenhängen erschwert. Dennoch gibt es mittlerweile in allen Bereichen der psychiatrischen Forschung erhebliche Fortschritte, die vor allem durch die kritische Überprüfung und Erneuerung bisheriger Krankheits- und Psychopathologie-Konzepte, die vermehrte Ausrichtung hin zur Neurobiologie und Genetik und insbesondere die Verwendung maschineller Lernverfahren ermöglicht wurden. Vor allem letztere Analysemethoden erlauben es, hochdimensionale und multimodale Datensätze zu integrieren und Modelle zu entwickeln, die einerseits neue psychobiologische Erkenntnisse liefern und andererseits eine real anwendbare Prädiktion von Diagnose, Therapieansprechen und Prognose auf Einzelfallniveau zunehmend realistisch erscheinen lassen. Ziel der hier vorliegenden Übersichtsarbeit soll daher sein, dem interessierten Leser das Konzept der Präzisionspsychiatrie näherzubringen, die hierfür verwendeten maschinellen Lernverfahren darzustellen und sowohl den gegenwärtigen Entwicklungsstand als auch zukunftsnahe Entwicklungen in diesem neuen Feld übersichtlich darzustellen.

Abstract

‘Precision Psychiatry’ as the psychiatric variant of ‘Precision Medicine’ aims to provide high-level diagnosis and treatment based on robust biomarkers and tailored to the individual clinical, neurobiological, and genetic constitution of the patient. The specific peculiarity of psychiatry, in which disease entities are normatively defined based on clinical experience and are also significantly influenced by contemporary history, society and philosophy, has so far made the search for valid and reliable psychobiological connections difficult. Nevertheless, considerable progress has now been made in all areas of psychiatric research, made possible above all by the critical review and renewal of previous concepts of disease and psychopathology, the increased orientation towards neurobiology and genetics, and in particular the use of machine learning methods. Notably, modern machine learning methods make it possible to integrate high-dimensional and multimodal data sets and generate models which provide new psychobiological insights and offer the possibility of individualized, biomarker-driven single-subject prediction of diagnosis, therapy response and prognosis. The aim of the present review is therefore to introduce the concept of ‘Precision Psychiatry’ to the interested reader, to concisely present modern, machine learning methods required for this, and to clearly present the current state and future of biomarker-based ‘precision psychiatry’.



Publikationsverlauf

Eingereicht: 31. August 2020

Angenommen: 27. Oktober 2020

Artikel online veröffentlicht:
11. Dezember 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: Toward clinical applications. Curr Opin Neurobiol 2019; 55: 152-159.
  • 2 Lilienfeld SO, Treadway MT. Clashing Diagnostic Approaches: DSM-ICD Versus RDoC. Annu Rev Clin Psychol 2016; 12: 435-463.
  • 3 Bzdok D, Machine M-LA. Learning for Precision Psychiatry: Opportunities and Challenges. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3: 223-230.
  • 4 Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ. et al. A longitudinal big data approach for precision health. Nat Med . 2019; 25: 792-804.
  • 5 Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?. Mol Psychiatry. 2012; 17: 1174-1179. Abgerufen https: / /www.nature.com/articles/mp2012105/
  • 6 van Os J. “Schizophrenia” does not exist. BMJ 2016; S: i375.
  • 7 Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med 2013; 11: 126.
  • 8 Bearden CE, Thompson PM. Emerging Global Initiatives in Neurogenetics: The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium. Neuron. 2017; S.: 232-236.
  • 9 Carneiro BA, Costa R, Taxter T. et al. Is personalized medicine here? Oncology. 2016 30. . Abgerufen: https: / /www.cancernetwork.com/review-article/personalized-medicine-here
  • 10 König IR, Fuchs O, Hansen G. et al. What is precision medicine? Eur Respir J 2017 50.
  • 11 Jameson JL, Larry Jameson J, Longo DL. Precision Medicine — Personalized, Problematic, and Promising. New England Journal of Medicine 2015; S.: 2229-2234.
  • 12 Robinson PN. Deep phenotyping for precision medicine. Hum Mutat 2012; 33: 777-780.
  • 13 Perlman RL, Govindaraju DR, Archibald E. Garrod: The father of precision medicine. Genet Med 2016; 18: 1088-1089.
  • 14 National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. . Washington (DC): National Academies Press (US); 2012.
  • 15 Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89-95.
  • 16 Fernandes BS, Williams LM, Steiner J. et al. The new field of „precision psychiatry“. BMC Med 2017; 15 (80).
  • 17 Hingorani AD, van der Windt DA, Riley RD. et al. u. a. Prognosis research strategy (PROGRESS) 4: Stratified medicine research. BMJ 2013; 346: e5793
  • 18 Fernandes BS, Gama CS, Kauer-Sant’Anna M. et al. Serum brain-derived neurotrophic factor in bipolar and unipolar depression: A potential adjunctive tool for differential diagnosis. J Psychiatr Res 2009; S.: 1200-1204.
  • 19 Carvalho AF, Köhler CA, Fernandes BS. et al. Bias in emerging biomarkers for bipolar disorder. Psychol Med 2016; S: 2287-2297.
  • 20 Zhou Z, Wu T-C, Wang B. et al. Machine learning methods in psychiatry: A brief introduction. Gen Psychiatr 2020; 33: e100171.
  • 21 Zarogianni E, Storkey AJ, Borgwardt S. et al. Individualized prediction of psychosis in subjects with an at-risk mental state. Schizophr Res 2019; 214: 18-23.
  • 22 Portugal LCL, Schrouff J, Stiffler R. et al. Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: A machine learning approach. Neuroimage Clin 2019; 23: 101813.
  • 23 Martinuzzi E, Barbosa S, Daoudlarian D. et al. Stratification and prediction of remission in first-episode psychosis patients: The OPTiMiSE cohort study. Transl Psychiatry 2019; 9 (20).
  • 24 Reniers RLEP, Lin A, Yung AR. et al. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis. Schizophr Bull 2017; 43: 449-458.
  • 25 Anderson JS, Shade J, DiBlasi E. et al. Polygenic risk scoring and prediction of mental health outcomes. Curr Opin Psychol 2019; 27: 77-81.
  • 26 Dwyer DB, Falkai P, Koutsouleris N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu Rev Clin Psychol 2018; 14: 91-118.
  • 27 Ahmed MR, Zhang Y, Feng Z. et al. Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng 2019; 12: 19-33.
  • 28 Klöppel S, Stonnington CM, Barnes J. et al. Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method. Brain 2008; 131: 2969-2974.
  • 29 Fusar-Poli P, Cappucciati M, Borgwardt S. et al. Heterogeneity of Psychosis Risk Within Individuals at Clinical High Risk: A Meta-analytical Stratification. JAMA Psychiatry 2016; 73: 113-120.
  • 30 Fajutrao L, Locklear J, Priaulx J. et al. A systematic review of the evidence of the burden of bipolar disorder in Europe. Clin Pract Epidemiol Ment Health 2009; 5: 3
  • 31 Hirschfeld RMA, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder: How far have wereally come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry. 2003; 64: 161-174 . Abgerufen https: / /www.ncbi.nlm.nih.gov/pubmed/12633125
  • 32 Redlich R, Almeida JR, Grotegerd D. et al. Brain Morphometric Biomarkers Distinguishing Unipolar and Bipolar Depression: A Voxel-Based Morphometry-Pattern Classification Approach. JAMA Psychiatry 2014; 71: 1222-1230.
  • 33 Moon SJ, Hwang J, Kana R. et al. Accuracy of Machine Learning Algorithms for the Diagnosis of Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. JMIR Mental Health 2019; S.: e14108.
  • 34 Górriz JM, Ramírez J, Segovia F. et al. A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms. Int J Neural Syst 2019; 29: 1850058
  • 35 Mak KK, Lee K, Park C. Applications of machine learning in addiction studies: A systematic review. Psychiatry Res 2019; 275: 53-60.
  • 36 Madsen KH, Krohne LG, Cai X-L. et al. Perspectives on Machine Learning for Classification of Schizotypy Using fMRI Data. Schizophr Bull 2018; 44: S480-S490.
  • 37 Schmitgen MM, Niedtfeld I, Schmitt R. et al. Individualized treatment response prediction of dialectical behavior therapy for borderline personality disorder using multimodal magnetic resonance imaging. Brain Behav 2019; 9: e01384.
  • 38 Steele VR, Rao V, Calhoun VD. et al. Machine learning of structural magnetic resonance imaging predicts psychopathic traits in adolescent offenders. Neuroimage 2017; 145: 265-273.
  • 39 Chekroud AM, Gueorguieva R, Krumholz HM. et al. Reevaluating the Efficacy and Predictability of Antidepressant Treatments: A Symptom Clustering Approach. JAMA Psychiatry 2017; 74: 370-378.
  • 40 Toenders YJ, Schmaal L, Harrison BJ. et al. Neurovegetative symptom subtypes in young people with major depressive disorder and their structural brain correlates. Transl Psychiatry 2020; 10: 108.
  • 41 Wu M-J, Mwangi B, Bauer IE. et al. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage 2017; S: 254-264.
  • 42 Jiménez E, Solé B, Arias B. et al. Characterizing decision-making and reward processing in bipolar disorder: A cluster analysis. Eur Neuropsychopharmacol 2018; 28: 863-874.
  • 43 Arnedo J, Svrakic DM, Del Val C. et al. Molecular Genetics of Schizophrenia Consortium, u. a. Uncovering the hidden risk architecture of the schizophrenias: Confirmation in three independent genome-wide association studies. Am J Psychiatry 2015; 172: 139-153.
  • 44 Jablensky A. Schizophrenia or schizophrenias? The challenge of genetic parsing of a complex disorder. Am J Psychiatry 2015; S.: 105-107.
  • 45 Yin L, Chau CKL, Sham P-C. et al. Integrating Clinical Data and Imputed Transcriptome from GWAS to Uncover Complex Disease Subtypes: Applications in Psychiatry and Cardiology. Am J Hum Genet 2019; 105: 1193-1212.
  • 46 Drysdale AT, Grosenick L, Downar J. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 2017; 23: 28-38.
  • 47 Maglanoc LA, Landrø NI, Jonassen R. et al. Data-Driven Clustering Reveals a Link Between Symptoms and Functional Brain Connectivity in Depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2019; 4: 16-26.
  • 48 Zandvakili A, Barredo J, Swearingen HR. et al. Mapping PTSD symptoms to brain networks: A machine learning study. Transl Psychiatry 2020; 10 (195).
  • 49 Chand GB, Dwyer DB, Erus G. et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain 2020; 143: 1027-1038.
  • 50 Dwyer DB, Cabral C, Kambeitz-Ilankovic L. et al. Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia. Schizophr Bull 2018; 44: 1060-1069.
  • 51 Popovic D, Ruef A, Dwyer DB. et al. Traces of trauma–a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes. Biol Psychiatry. 2020 Abgerufen: https: / /www.sciencedirect.com/science/article/pii/S0006322320316267
  • 52 Tang Y, Jiang W, Liao J. et al. Identifying Individuals with Antisocial Personality Disorder Using Resting-State fMRI. PLoS ONE 2013; S.: e60652.
  • 53 Gradus JL, Rosellini AJ, Horváth-Puhó E. et al. Prediction of Sex-Specific Suicide Risk Using Machine Learning and Single-Payer Health Care Registry Data From Denmark. JAMA Psychiatry 2019
  • 54 Xiao B, Imel ZE, Georgiou P. et al. Computational Analysis and Simulation of Empathic Behaviors: A Survey of Empathy Modeling with Behavioral Signal Processing Framework. Curr Psychiatry Rep 2016; 18: 49.
  • 55 Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S. et al. Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry. 2018; 75: 1156-1172. Abgerufen HYPERLINK "https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2707956" \o. https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2707956 https: / /jamanetwork.com/journals/jamapsychiatry/article-abstract/2707956
  • 56 Athreya AP, Neavin D. Carrillo‐Roa T. et al. Pharmacogenomics‐Driven Prediction of Antidepressant Treatment Outcomes: A Machine‐Learning Approach With Multi‐trial Replication. Clin Pharmacol Ther 2019; 106: 855-865.
  • 57 Koutsouleris N, Wobrock T, Guse B. et al. Predicting Response to Repetitive Transcranial Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance Imaging: A Multisite Machine Learning Analysis. Schizophr Bull 2018; S: 1021-1034.
  • 58 Kambeitz J, Goerigk S, Gattaz W. et al. Clinical patterns differentially predict response to transcranial direct current stimulation (tDCS) and escitalopram in major depression: A machine learning analysis of the ELECT-TDCS study. J Affect Disord 2020; S: 460-467.
  • 59 Al-Kaysi AM, Al-Ani A, Loo CK. et al. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. J Affect Disord 2017; 208: 597-603.
  • 60 Goldberg SB, Flemotomos N, Martinez VR. et al. Machine learning and natural language processing in psychotherapy research: Alliance as example use case. J Couns Psychol 2020; 67: 438-448.
  • 61 Fusar-Poli P, Hijazi Z, Stahl D. et al. The Science of Prognosis in Psychiatry: A Review. JAMA Psychiatry 2018; 75: 1289-1297.
  • 62 Budde M, Anderson-Schmidt H, Gade K. et al. A longitudinal approach to biological psychiatric research: The PsyCourse study. Am J Med Genet B Neuropsychiatr Genet 2019; 180: 89-102.
  • 63 Quinlan EB, Banaschewski T, Barker GJ. et al. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry 2020; 25: 243-253.
  • 64 Librenza-Garcia D, Passos IC, Feiten JG. et al. Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: An analysis of the ELSA-Brasil study. Psychol Med 2020; 1-9.
  • 65 Arbabshirani MR, Plis S, Sui J. et al. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017; 145: 137-165.
  • 66 Jo T, Nho K, Saykin AJ. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front Aging Neurosci 2019
  • 67 Studerus E, Ramyead A, Riecher-Rössler A. Prediction of transition to psychosis in patients with a clinical high risk for psychosis: A systematic review of methodology and reporting. Psychol Med 2017; 47: 1163-1178.
  • 68 Dinga R, Marquand AF, Veltman DJ. et al. Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: A machine learning approach. Transl Psychiatry. 2018 8. (241).
  • 69 Schmaal L, Marquand AF, Rhebergen D. et al. Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Biol Psychiatry 2015; 78: 278-286.
  • 70 Cearns M, Opel N, Clark S. et al. Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: A multimodal machine learning approach. Transl Psychiatry 2019; 9 (285).
  • 71 Abdullah-Koolmees H, Gardarsdottir H, Minnema LA. et al. Predicting rehospitalization in patients treated with antipsychotics: A prospective observational study. Ther Adv Psychopharmacol 2018; 8: 213-229.
  • 72 Symons M, Feeney GFX, Gallagher MR. et al. Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication. J Subst Abuse Treat 2019; 99: 156-162.
  • 73 Maričić LM, consortium IMAGEN, Walter H. et al. The IMAGEN study: A decade of imaging genetics in adolescents. Mol Psychiatry 2020
  • 74 Smoller JW, Andreassen OA, Edenberg HJ. et al. Psychiatric genetics and the structure of psychopathology. Mol Psychiatry 2019; 24: 409-420.
  • 75 Woo C-W, Chang LJ, Lindquist MA. et al. Building better biomarkers: Brain models in translational neuroimaging. Nat Neurosci. 2017 20. 365. Abgerufen: https: / /www.nature.com/articles/nn.4478.pdf?origin = ppub
  • 76 Levis B, Benedetti A, Thombs BD. DEPRESsion Screening Data (DEPRESSD) Collaboration. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. BMJ 2019; 365 (1476).
  • 77 Steyerberg EW, Moons KGM, van der Windt DA. et al. Prognosis Research Strategy (PROGRESS) 3: Prognostic model research. PLoS Med 2013; 10: e1001381.
  • 78 Gennatas ED, Friedman JH, Ungar LH. et al. Expert-augmented machine learning. Proc Natl Acad Sci U S A 2020; 117: 4571-4577.