Subscribe to RSS
DOI: 10.1055/a-1065-2129
Mutationsabhängige Mechanismen und deren Bedeutung für zielgerichtete Behandlungsstrategien am Beispiel von Bestrophin 1 und den Bestrophinopathien
Mutation-Dependent Mechanisms and Their Impact on Targeted Therapeutic Strategies with Reference to Bestrophin 1 and the BestrophinopathiesPublication History
eingereicht 10 September 2019
akzeptiert 07 November 2019
Publication Date:
02 March 2020 (online)

Zusammenfassung
Das Bestrophin-1-Gen (BEST1) codiert für ein integrales Membranprotein und findet sich im basolateralen Aspekt des retinalen Pigmentepithels. Mutationen im BEST1 sind mit einer heterogenen Gruppe von erblichen Netzhautdystrophien assoziiert, den sog. Bestrophinopathien, die schon in jüngerem Alter zu einer Beeinträchtigung des Sehvermögens führen können. Die einzelnen Krankheitsbilder sind anhand ihrer phänotypischen Merkmale und Erbgänge abgrenzbar. Während die meisten BEST1-Mutationen einem autosomal-dominanten Erbgang folgen, bei dem bereits eine defekte Genkopie zur Erkrankung führt, sind bei der autosomal-rezessiven Bestrophinopathie heterozygote Mutationsträger i. d. R. symptomfrei. In diesem Übersichtsartikel soll am Beispiel der Bestrophinopathien die Bedeutung der Kenntnis von mutationsabhängigen Mechanismen für das Verständnis der Pathogenese, aber auch für die Entwicklung von zukünftigen Therapieansätzen, hervorgehoben werden.
Abstract
Bestrophin 1 (BEST1) encodes an integral membrane protein localized in the basolateral aspect of the retinal pigment epithelium. Mutations in BEST1 are associated with distinct retinal dystrophies, the so-called “bestrophinopathies”, often causing visual impairment, even in early childhood. The clinical entities of the bestrophinopathies can be distinguished by phenotypic characteristics and mode of inheritance of the respective gene defect. While the autosomal dominant inheritance pattern with one altered copy of BEST1 is common, heterozygous carriers of the autosomal recessive bestrophinopathy are generally but not consistently symptom-free. This review highlights the significance of understanding the underlying molecular mechanisms that contribute to disease pathogenesis of autosomal dominant and autosomal recessive bestrophinopathies. This knowledge is deemed crucial and needs to be considered in future planning of treatment strategies.
-
Literatur
- 1 Marquardt A, Stohr H, Passmore LA. et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Bestʼs disease). Hum Mol Genet 1998; 7: 1517-1525
- 2 Petrukhin K, Koisti MJ, Bakall B. et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet 1998; 19: 241-247 doi:10.1038/915
- 3 Nordström S. Hereditary macular degeneration – a population survey in the country of Västerbotten, Sweden. Hereditas 1974; 78: 41-62 doi:10.1111/j.1601-5223.1974.tb01427.x
- 4 Bitner H, Schatz P, Mizrahi-Meissonnier L. et al. Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: data from a national center in Denmark. Am J Ophthalmol 2012; 154: 403-412.e4 doi:10.1016/j.ajo.2012.02.036
- 5 Yardley J, Leroy BP, Hart-Holden N. et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 2004; 45: 3683-3689 doi:10.1167/iovs.04-0550
- 6 Burgess R, Millar ID, Leroy BP. et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 2008; 82: 19-31 doi:10.1016/j.ajhg.2007.08.004
- 7 Boon CJ, Theelen T, Hoefsloot EH. et al. Clinical and molecular genetic analysis of best vitelliform macular dystrophy. Retina 2009; 29: 835-847 doi:10.1097/IAE.0b013e31819d4fda
- 8 Khan KN, Islam F, Moore AT. et al. The fundus phenotype associated with the p.Ala243Val BEST1 mutation. Retina 2018; 38: 606-613 doi:10.1097/iae.0000000000001569
- 9 Cross HE, Bard L. Electro-oculography in Bestʼs macular dystrophy. Am J Ophthalmol 1974; 77: 46-50
- 10 Seddon JM, Sharma S, Chong S. et al. Phenotype and genotype correlations in two best families. Ophthalmology 2003; 110: 1724-1731 doi:10.1016/s0161-6420(03)00575-x
- 11 Johnson AA, Guziewicz KE, Lee CJ. et al. Bestrophin 1 and retinal disease. Prog Retin Eye Res 2017; 58: 45-69 doi:10.1016/j.preteyeres.2017.01.006
- 12 Mohler CW, Fine SL. Long-term evaluation of patients with Bestʼs vitelliform dystrophy. Ophthalmology 1981; 88: 688-692
- 13 Lima de Carvalho jr. JR, Paavo M, Chen L. et al. Multimodal imaging in Best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 2019; 60: 2012-2022 doi:10.1167/iovs.19-26571
- 14 Kaufman SJ, Goldberg MF, Orth DH. et al. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol 1982; 100: 272-278
- 15 Kellner U, Renner AB, Herbst SM. et al. [Hereditary retinal dystrophies]. Klin Monatsbl Augenheilkd 2012; 229: 171-193 doi:10.1055/s-0031-1280461
- 16 Boon CJ, van den Born LI, Visser L. et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology 2013; 120: 809-820 doi:10.1016/j.ophtha.2012.09.057
- 17 Takahashi K, Tanabe K, Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872 doi:10.1016/j.cell.2007.11.019
- 18 Brandl C, Zimmermann SJ, Milenkovic VM. et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med 2014; 16: 551-564 doi:10.1007/s12017-014-8308-8
- 19 Milenkovic A, Milenkovic VM, Wetzel CH. et al. BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes. Hum Mol Genet 2018; 27: 1630-1641 doi:10.1093/hmg/ddy070
- 20 Milenkovic A, Brandl C, Milenkovic VM. et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 2015; 112: E2630-E2639 doi:10.1073/pnas.1418840112
- 21 Milenkovic A, Schmied D, Tanimoto N. et al. The Y227N mutation affects bestrophin-1 protein stability and impairs sperm function in a mouse model of Best vitelliform macular dystrophy. Biol Open 2019;
- 22 Beltran WA, Cideciyan AV, Guziewicz KE. et al. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations. PLoS One 2014; 9: e90390 doi:10.1371/journal.pone.0090390
- 23 Guziewicz KE, Cideciyan AV, Beltran WA. et al. BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc Natl Acad Sci U S A 2018; 115: E2839-E2848 doi:10.1073/pnas.1720662115
- 24 Singh R, Shen W, Kuai D. et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 2013; 22: 593-607 doi:10.1093/hmg/dds469
- 25 Stotz SC, Clapham DE. Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen. PLoS One 2012; 7: e46865 doi:10.1371/journal.pone.0046865
- 26 Kane Dickson V, Pedi L, Long SB. Structure and insights into the function of a Ca(2+)-activated Cl(−) channel. Nature 2014; 516: 213-218 doi:10.1038/nature13913
- 27 Yang T, Liu Q, Kloss B. et al. Structure and selectivity in bestrophin ion channels. Science 2014; 346: 355-359 doi:10.1126/science.1259723
- 28 Nachtigal AL, Milenkovic A, Brandl C. et al. Mutation-dependent pathomechanisms in the bestrophinopathies. Int J Mol Sci 2020 (Manuskript eingereicht)
- 29 Miller AN, Vaisey G, Long SB. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin. eLife 2019;
- 30 Milenkovic VM, Rohrl E, Weber BH. et al. Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J Cell Sci 2011; 124: 2988-2996 doi:10.1242/jcs.085878
- 31 Moshfegh Y, Velez G, Li Y. et al. BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE. Hum Mol Genet 2016; 25: 2672-2680 doi:10.1093/hmg/ddw126
- 32 Ward CL, Kopito RR. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 1994; 269: 25710-25718
- 33 Hamdan N, Kritsiligkou P, Grant CM. ER stress causes widespread protein aggregation and prion formation. J Cell Biol 2017; 216: 2295-2304 doi:10.1083/jcb.201612165
- 34 Iannitti T, Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 2011; 11: 227-249 doi:10.2165/11591280-000000000-00000
- 35 Siddiqui N, Sonenberg N. Proposing a mechanism of action for ataluren. Proc Natl Acad Sci U S A 2016; 113: 12353-12355 doi:10.1073/pnas.1615548113
- 36 Tsai YT, Wu WH, Lee TT. et al. Clustered Regularly Interspaced Short Palindromic Repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology 2018; 125: 1421-1430 doi:10.1016/j.ophtha.2018.04.001
- 37 Mali P, Yang L, Esvelt KM. et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-826 doi:10.1126/science.1232033
- 38 Cho SW, Kim S, Kim JM. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 230-232 doi:10.1038/nbt.2507
- 39 Jinek M, East A, Cheng A. et al. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471 doi:10.7554/eLife.00471
- 40 Giannelli SG, Luoni M, Castoldi V. et al. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 2018; 27: 761-779 doi:10.1093/hmg/ddx438