Deutsche Zeitschrift für Onkologie 2019; 51(04): 158-164
DOI: 10.1055/a-1030-3015
Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Eine gesunde Darmmikrobiota unterstützt die Barriere-Funktion der Mukosa

A Healthy Gut Microbiota Enhances the Barrier Function of the Mucosa
Angelika Hecht
1   SymbioPharm GmbH, Herborn
,
Elke Jaspers
2   mikroLogos GmbH, Duisburg
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2019 (online)

ZUSAMMENFASSUNG

Die Darmschleimhaut hat gegensätzlich erscheinende Aufgaben: Einerseits dient sie der Resorption von Nährstoffen, andererseits bildet sie gleichzeitig eine Barriere zwischen der Außenwelt und dem Körperinneren. Zur Dichtigkeit der Mukosa tragen eine unversehrte Mukusschicht auf dem Epithel, gut ernährte Epithelzellen mit intakten Tight Junctions und insbesondere eine gesunde Darmmikrobiota bei. Ist die Barriere geschädigt, steigt das Risiko für eine Silent Inflammation, die den ganzen Körper betrifft und für zahlreiche chronische Erkrankungen verantwortlich ist.

ABSTRACT

The gut mucosa has different functions, which, at first glance, seem to be contradictory: On the one hand, the intestinal mucosa resorbs nutrients, but on the other hand it also forms a barrier between the outside and inside of the body. Several factors contribute to the correct mucosal function: An intact mucus layer on top of the epithelium, a well-fed epithelial cell layer including their tight junctions, and especially a healthy gut microbiota. A damaged gut barrier increases the risk for acquiring a silent inflammation, which is responsible for a wide range of chronic diseases.

 
  • Literatur

  • 1 Jungersen M. et al. The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12®. Microorganisms 2014; 2: 92-110. doi:10.3390/microorganisms2020092
  • 2 Zschüttig A. et al. Identification and characterization of Microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One 2012; 7: e33351. doi:10.1371/journal.pone.0033351
  • 3 Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294: 1-8. doi:10.1111/j.1574-6968.2009.01514.x
  • 4 Bischoff SC. Hrsg Probiotika, Präbiotika, Symbiotika. Stuttgart: Thieme; 2009. ISBN: 9783131551511
  • 5 Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab 2013; 14: 994-1008
  • 6 Ferreira-Halder CV. et al. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 2017; 31: 643-648. doi:10.1016/j.bpg.2017.09.011
  • 7 Duncan SH, Holtrop G, Lobley GE. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004; 91: 915-923
  • 8 Ze X. et al. Rumincoccus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012; 6: 1535-1543. doi:10.1038/ismej.2012.4
  • 9 Keenan MJ. et al. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr 2015; 6: 198-205. doi:10.3945/an.114.007419
  • 10 Rhodes JM. Mucins and inflammatory bowel disease. Q J Med 1997; 90: 79-82. doi:10.1093/qjmed/90.2.79
  • 11 Hansson GG. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 2012; 15: 57-62 doi:10.1016/j.mib.2011.11.002
  • 12 Vaishnava S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334 (6053) 255-258. doi:10.1126/science.1209791
  • 13 Heyn G. Sensible Festung gegen Angreifer. Pharmazeutische Zeitung online 2006; Ausgabe 5. https://www.pharmazeutische-zeitung.de/ausgabe-052006/sensible-festung-gegen-angreifer/
  • 14 Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 2017; 8: 1765 doi:10.3389/fmicb.2017.01765
  • 15 Ottman N. et al. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol 2017; 31: 637-642. doi:10.1016/j.bpg.2017.10.001
  • 16 König J. et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 2016; 7: e196. doi:10.1038/ctg.2016.54
  • 17 Yu Q. et al. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol 2015; 5: 26 doi:10.3389/fcimb.2015.00026
  • 18 Najarian A, Sharif S, Griffiths MW. Evaluation of protective effect of Lactobacillus acidophilus La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro. Anaerobe 2019; 55: 142-151. doi:10.1016/j.anaerobe.2018.12.004
  • 19 Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 2013; 9: 99-107
  • 20 Chassaing B. et al. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017; 66: 1414-1427 doi:10.1136/gutjnl-2016-313099
  • 21 Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14: 479-489. doi:10.1016/j.autrev.2015.01.009
  • 22 Lambertz J. et al. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 2017; 8: 1159 doi:10.3389/fimmu.2017.01159
  • 23 Ostermann AL. et al. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nature Metabolism 2019; 1: 371-389 doi:10.1038/s42255-019-0037-8
  • 24 Cani PD. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772
  • 25 Kim JJ, Sears DD. TLR4 and insulin resistance. Gastroenterol Res Pract 2010; 2010 pii 212563. doi:10.1155/2010/212563
  • 26 Liang H. et al. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 2013; 8: e63983. doi:10.1371/journal.pone.0063983
  • 27 Pussinen PJ. et al. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011; 34: 392-397 doi:10.2337/dc10-1676
  • 28 Jayashree B. et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 2014; 388: 203-210. doi:10.1007/s11010-013-1911-4
  • 29 Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016; 4: e1251384
  • 30 Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91: 151-175 doi:10.1152/physrev.00003.2008
  • 31 Stevens BR. et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2018; 67: 1555-1557. doi:10.1136/gutjnl-2017-314759
  • 32 Schwiertz A. et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson̓s disease. Parkinsonism Relat Disord 2018; 50: 104
  • 33 Esnafoglu E, Cırrık S, Ayyıldız SN. et al. Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J Pediatr 2017; 188: 240-244 doi:10.1016/j.jpeds.2017.04.004
  • 34 Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303: 1662-1665
  • 35 McGhee JR, Fujihashi K. Inside the mucosal immune system. PLOS One 2012; 10: e1001397
  • 36 Siddiqui I, Majid H, Abid S. Update on clinical and research application of fecal biomarkers for gastrointestinal diseases. World J Gastrointest Pharmacol Ther 2017; 8: 39-46. doi:10.4292/wjgpt.v8.i1.39
  • 37 Rusch V, Zimmermann K. Microbial therapy with Enterococcus faecalis and Escherichia coli: Experimental and clinical data. In Fuller R. et al. ed Probiotics: Prospects of use in opportunistic infections. Old Herborn University: Institute for Microbiology and Biochemistry; 1995
  • 38 Habermann W. et al. Einfluss eines bakteriellen Immunstimulans (humane Enterococcus faecalis-Bakterien) auf die Rezidivhäufigkeit bei Patienten mit chronischer Bronchitis. Arzneim Forsch 2001; 51: 931-937
  • 39 Habermann W. et al. Verminderung der Rezidivhäufigkeit bei Patienten mit chronisch rezidivierender hypertrophischer Sinusitis unter Behandlung mit einem bakteriellen Immunstimulans (Enterococcus faecalis-Bakterien humaner Herkunft). Arzneim Forsch 2002; 52: 622-627
  • 40 Peters A. et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet 2019; 15 (5) e1008145 doi:10.1371/journal.pgen.1008145
  • 41 Alsheridah N, Akhtar S. Diet, obesity and colorectal carcinoma risk: results from a national cancer registry-based middle-eastern study. BMC Cancer 2018; 18 (1): 1227