Deutsche Zeitschrift für Onkologie 2018; 50(03): 124-130
DOI: 10.1055/a-0657-4437
Forschung
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Mitochondrien als potenzielle Zielstruktur in der Krebstherapie

Targeting Mitochondria for Cancer Therapy
Sabine Schmitt
1   Institut für Toxikologie und Umwelthygiene, Technische Universität München
,
Hans Zischka
1   Institut für Toxikologie und Umwelthygiene, Technische Universität München
2   Institut für molekulare Toxikologie und Pharmakologie, Helmholtz Zentrum München
› Author Affiliations
Further Information

Publication History

Publication Date:
24 September 2018 (online)

Zusammenfassung

Mitochondrien spielen für das Überleben, die metabolische Homöostase, das Wachstum und die Teilung (Proliferation) von Zellen eine entscheidende Rolle. Zu den herausragenden Funktionen dieser Organellen gehören insbesondere die effiziente zelluläre Energieproduktion, die Regulation des programmierten Zelltods und die Beteiligung am Zellmetabolismus durch den Auf-, Ab- und Umbau wichtiger zellulärer Moleküle. Um die besonderen Bedürfnisse von schnell proliferierenden Krebszellen erfüllen zu können, verändern Mitochondrien die Gewichtung dieser Funktionen durch eine Veränderung ihres molekularen Aufbaus. Diese molekularen Veränderungen stellen den zentralen Ansatzpunkt dar, um mitochondrial wirksame Chemotherapeutika („Mitocans“) mit hoher Tumorspezifität zu entwickeln. Dieser Übersichtsartikel beschreibt die mitochondrialen Funktionen und dazugehörigen molekularen Grundlagen welche für die Wirkung solcher Mitocans von Bedeutung sind und gibt einen Überblick über den derzeitigen Entwicklungsstand dieser Substanzen.

Abstract

Mitochondria play a central role for cell survival, metabolism and proliferation, as they are the power houses of the cell, the master regulators of programmed cell death and an important player in cellular metabolism. Mitochondria adapt their functions by changes in their molecular composition to fulfill the specific needs of rapidly growing tumor cells. Conceptually, this is the rationale to develop mitochondria targeting anti-cancer agents (so called “mitocans”) with high tumor specificity. This review describes the most relevant mitochondrial functions and molecular adaptations that are related to the mode of action of current mitocans and outlines their state of development.

 
  • Literatur

  • 1 Alexandre J. et al. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 2006; 98: 236-244
  • 2 Barbosa IA. et al. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 2012; 1826: 238-254
  • 3 Berridge MV, Herst PM, Lawen A. Targeting mitochondrial permeability in cancer drug development. Mol Nutr Food Res 2009; 53: 76-86
  • 4 Bradley KA. et al. Motexafin gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a Children's Oncology Group phase I study. Neuro Oncol 2008; 10: 752-758
  • 5 Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 1997; 29: 355-364
  • 6 Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58: 1408-1416
  • 7 Chang BS. et al. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J 1997; 16: 968-977
  • 8 Chipuk JE, Bouchier-Hayes L, Green DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 2006; 13: 1396-1402
  • 9 Criddle DN. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 2006; 281: 40485-40492
  • 10 Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341 Pt 2 233-249
  • 11 Decaudin D. et al. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res 2002; 62: 1388-1393
  • 12 Degli Esposti M, Dive C. Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 2003; 304: 455-461
  • 13 Diel IJ. et al. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann Oncol 2008; 19: 2007-2011
  • 14 Don AS. et al. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 2003; 3: 497-509
  • 15 Dragovich T. et al. Phase I trial of imexon in patients with advanced malignancy. J Clin Oncol 2007; 25: 1779-1784
  • 16 Du C. et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33-42
  • 17 Eskes R. et al. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000; 20: 929-935
  • 18 Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009; 124: 511-515
  • 19 Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447-464
  • 20 Fulda S, Kroemer G. Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 2011; 15: 2937-2949
  • 21 Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008; 135: 1161-1163
  • 22 Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 2006; 1757: 639-647
  • 23 Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol 2008; 18: 165-173
  • 24 Goldin N. et al. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 2008; 27: 636-643
  • 25 Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32: 37-43
  • 26 Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305: 626-629
  • 27 Hail Jr. N. Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 2005; 10: 687-705
  • 28 Hail Jr N. et al. Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 2006; 11: 889-904
  • 29 Halestrap AP. et al. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998; 1366: 79-94
  • 30 Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 2004; 61: 372-385
  • 31 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70
  • 32 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 33 Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 1979; 195: 460-467
  • 34 Huang P. et al. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390-395
  • 35 Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 1976; 251: 5069-5077
  • 36 Johnson-Cadwell LI. et al. 'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem 2007; 101: 1619-1631
  • 37 Juarez JC. et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci U S A 2008; 105: 7147-7152
  • 38 Jurgensmeier JM. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95: 4997-5002
  • 39 Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002; 181-182: 471-474
  • 40 Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 2007; 12: 857-868
  • 41 Kitada S. et al. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21: 3459-3474
  • 42 Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 2001; 173: 83-91
  • 43 Ko YH. et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004; 324: 269-275
  • 44 Kroemer G. Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4: 443-456
  • 45 Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513-519
  • 46 Kroemer G, Galluzzi L, Brenner V. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99-163
  • 47 Lehenkari PP. et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 2002; 61: 1255-1262
  • 48 Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95-99
  • 49 Liu X. et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147-157
  • 50 Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011; 14: 443-451
  • 51 Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441-464
  • 52 Maeda H. et al. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 2004; 11: 737-746
  • 53 Magda D, Miller RA. Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 2006; 16: 466-476
  • 54 Mannella CA. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 1998; 121: 207-218
  • 55 Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 2006; 25: 4777-4786
  • 56 Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 2009; 19: 17-24
  • 57 Mehta MP. et al. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys 2009; 73: 1069-1076
  • 58 Mestre-Escorihuela C. et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 2007; 109: 271-280
  • 59 Moulder S. et al. A phase I trial of imexon, a pro-oxidant, in combination with docetaxel for the treatment of patients with advanced breast, non-small cell lung and prostate cancer. Invest New Drugs 2010; 28: 634-640
  • 60 Neuzil J. et al. Molecular mechanism of 'mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 2006; 580: 5125-5129
  • 61 Notario B. et al. All-trans-retinoic acid binds to and inhibits adenine nucleotide translocase and induces mitochondrial permeability transition. Mol Pharmacol 2003; 63: 224-231
  • 62 O'Brien S. et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2007; 25: 1114-1120
  • 63 Okaro AC. et al. Pk11195, a mitochondrial benzodiazepine receptor antagonist, reduces apoptosis threshold in Bcl-X(L) and Mcl-1 expressing human cholangiocarcinoma cells. Gut 2002; 51: 556-561
  • 64 Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett 2004; 149: 19-23
  • 65 Parikh SA. et al. Phase II study of obatoclax mesylate (GX15-070), a small-molecule BCL-2 family antagonist, for patients with myelofibrosis. Clin Lymphoma Myeloma Leuk 2010; 10: 285-289
  • 66 Pedersen PL. et al. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 2002; 1555: 14-20
  • 67 Pepper C. et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807-3817
  • 68 Powell BL. et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 2010; 116: 3751-3757
  • 69 Ralph SJ, Neuzil J. Mitochondria as targets for cancer therapy. Mol Nutr Food Res 2009; 53: 9-28
  • 70 Rampino N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967-969
  • 71 Rodriguez-Enriquez S. et al. Targeting of cancer energy metabolism. Mol Nutr Food Res 2009; 53: 29-48
  • 72 Roy SS. et al. Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Mol Cell 2009; 33: 377-388
  • 73 Rudin CM. et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 2012; 18: 3163-3169
  • 74 Schulze-Osthoff K. et al. Apoptosis signaling by death receptors. Eur J Biochem 1998; 254: 439-459
  • 75 Simamura E. et al. Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol Ther 2006; 5: 1523-1529
  • 76 Skulachev VP. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 2006; 11: 473-485
  • 77 Stein M. et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 2010; 70: 1388-1394
  • 78 Suh DH. et al. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 2013; 3: 41
  • 79 Susin SA. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446
  • 80 Tagawa H. et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24: 1348-1358
  • 81 Tan C. et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J Biol Chem 2006; 281: 14764-14775
  • 82 Trachootham D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006; 10: 241-252
  • 83 Tsujimoto Y. et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097-1099
  • 84 Van Poznak C. et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat 2001; 66: 239-248
  • 85 Verhagen AM. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43-53
  • 86 Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314
  • 87 Wolf A. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208: 313-326
  • 88 Wood L. et al. Inhibition of superoxide dismutase by 2-methoxyoestradiol analogues and oestrogen derivatives: structure-activity relationships. Anticancer Drug Des 2001; 16: 209-215