Homeopathy 2015; 104(02): 90-96
DOI: 10.1016/j.homp.2015.01.002
 
Copyright © The Faculty of Homeopathy 2015

Hormesis within a mechanistic context

Edward J. Calabrese

Subject Editor:
Further Information

Publication History

Received22 August 2014
revised19 November 2014

accepted26 January 2015

Publication Date:
19 December 2017 (online)

This paper provides an assessment of the mechanistic foundations of hormesis and how such understandings evolved over the course of the past century. Particular emphasis is placed on recent developments particularly with respect to receptor-based and cell signaling-based pathways. Of particular importance is that the quantitative feature of the hormetic dose response are independent of mechanism.

 
  • References

  • 1 Southam C.M., Ehrlich J. Effects of extracts of western red cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 1943; 33: 517-524.
  • 2 Calabrese E.J. Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol 2005; 51: 643-654.
  • 3 Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 2008; 27: 1451-1474.
  • 4 Calabrese E.J. Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 2011; 30: 2658-2673.
  • 5 Schulz H. Zur Lehre von der Arzneiwirkung. Virchows Arch Pathol Anat Physiol Klin Med 1887; 108: 423-445.
  • 6 Schulz H. Uber Hefegifte. Pflugers Arch Physiol Menschen Tiere 1888; 42: 517-541.
  • 7 Calabrese E.J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Poll 2005; 138: 378-411.
  • 8 Calabrese E.J. Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 2009; 83: 227-247.
  • 9 Calabrese E.J. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 2009; 83: 203-225.
  • 10 Calabrese E.J. Historical foundations of hormesis. Homeopathy 2015; 104.
  • 11 Calabrese E.J., Baldwin L.A. Defining hormesis. Hum Exper Toxicol 2002; 21: 91-97.
  • 12 Calabrese E.J. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Age Res Rev 2008; 7: 8-20.
  • 13 Jutte R., Riley D. A review of the use and role of low potencies in homeopathy. Complement Ther Med 2005; 13: 291-296.
  • 14 Li Sy., Deng Y.B., Feng J.Q., Ye W.B. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Intern 2009; 33: 411-412.
  • 15 Calabrese E.J., Blain R. The occurrence of hormetic dose response in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 2005; 202: 289-301.
  • 16 Calabrese E.J., Blain R. Hormesis and plant biology. Environ Poll 2009; 157: 42-48.
  • 17 Calabrese E.J., Blain R. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Reg Toxicol Pharmacol 2011; 61: 73-81.
  • 18 Townsend C.O. The correlation of growth under the influence of injuries. Ann Bot 1897; 11: 509-532.
  • 19 Branham S.E. The effects of certain chemical compounds upon the course of gas production by Baker's yeast. J Baceriol 1929; 18: 247-284.
  • 20 Chavarria A.P., Clark J.H. The reaction of pathogenic fungi to ultra-violet light and the role played by pigment in this reaction. Amer J Hyg 1924; 4: 639-649.
  • 21 Smith E.C. Effects of ultra-violet radiation and temperature on Fusarium. II. Stimulation. Bull Tor Bot Club 1935; 62: 151-164.
  • 22 Smith E.C. The effects of radiation on fungi. In: Duggar BM (ed). Biological effects of radiation Vol II 1936. McGraw-Hill Book Co., Inc; New York: 889-918.
  • 23 Sperti G.S., Loofbourow J.R., Dwyer C.M. Proliferation-promoting factors from ultraviolet injured cells. Ins Divi Thomae 1937; 1: 163-191.
  • 24 Sperti G.S., Loofbourow J.R., Lane M.M. Effects on tissue cultures of intercellular hormones from injured cells. Science 1937; 86: 611.
  • 25 Kostyuk S.V., Tabakov V.J., Chestkov V.V., Konkova M.S., Glebova K.V., Baydakova G.V. et al. Oxidized DNA induces an adaptive response in human fibroblasts. Mut Res 2013; 747–748: 6-18.
  • 26 Gordon M.B. The stimulative effect of roentgen rays upon the glands of internal secretion. Endocrinology 1930; 14: 411-437.
  • 27 Warren S. The histopathology of radiation lesions. Physiol Rev 1945; 25: 225-238.
  • 28 Hektowen L. Further observations on the effects of roentgenization and splenectomy on antibody production. J Infect Dis 1920; 27: 23-30.
  • 29 Pohle E.A. Effect of roentgen rays on the reticuloendothelial system. Am J Roentgen 1929; 22: 439-447.
  • 30 Koga Y. Uber die Wechselbeziehungen zwischen den Veranderungen des Farbstoffspeicherungsvermogens des Retikuloendothelial-Systems, der Hamobakterizidie und des Mineralstoffgehaltes der Gewebe bei bestrahlten Kaninchen. Strahlentherapie 1933; 47: 201-232.
  • 31 Tenneff S., Stoppani F. L'influenza delle irradiazioni sulle linfoghiandole e sulla circolazione linfatica. Radiol Med 1935; 22: 768-787.
  • 32 Schurer F. Wien. Klin. Wchnschr. 41:1581 (as cited in Dunlap). – Dunlap CE. (1942). Effects of radiation on the blood and the hemopoetic tissues, including the spleen, the thymus and the lymph nodes. Arch Pathol 1928; 34:562–608.
  • 33 Calabrese E.J. Overcompensation stimulation: a mechanism for hormetic effects. Crit Rev Toxicol 2001; 31: 425-470.
  • 34 Stebbing A.R.D. Hormesis – stimulation of colony growth in Campanularia flexuosa (Hydrozoa) by copper, cadmium and other toxicants. Aquat Toxicol 1981; 1: 227-238.
  • 35 Stebbing A.R.D. Hormesis – the stimulation of growth by low levels of inhibitors. Sci Total Environ 1982; 22: 213-234.
  • 36 Stebbing A.R.D. A theory for growth hormesis. Mut Res 1998; 403: 249-258.
  • 37 Stebbing A.R.D. Hormesis: Interpreting the beta-curve using control theory. J Appl Toxicol 2000; 20: 93-101.
  • 38 Stebbing A.R.D. Interpreting ‘dose-response’ curves using homeodynamic data: with an improved explanation for hormesis. Dose-Response 2009; 7: 221-233.
  • 39 Stebbing A.R.D., Pomroy A.J. A sublethal technique for assessing the effects of contaminants using Hydra littoralis. Wat Res 1978; 12: 631-635.
  • 40 Stebbing A.R.D. The kinetics of growth control in a colonial hydroid. J Mar Biol Assoc UK 1981; 61: 35-63.
  • 41 Stebbing A.R.D., Norton J.P., Brinsley M.D. Dynamics of growth control in a marine yeast subject to perturbation. J Gen Microbiol 1984; 130: 1799-1808.
  • 42 Stebbing A.R.D. A mechanism for hormesis – A problem in the wrong discipline. Crit Rev Toxicol 2003; 33: 463-467.
  • 43 Szabaldi E. Model of 2 functionally antagonistic receptor populations activated by same agonist. J Theor Biol 1977; 69: 101-112.
  • 44 Jarv J., Hautala R., Akerman K. Dual effect of muscarinic receptor agonists on CA2+ mobilization in SH-SY5Y neuroblastoma cells. Eur J Pharmacol 1995; 291: 43-50.
  • 45 Jarv J. A model of nonexclusive binding of agonist and antagonist on G-protein coupled receptors. J Theor Biol 1995; 175: 577-582.
  • 46 Rovati G.E., Nicosia S. An alternative model for bell-shaped concentration response curves – Reply. Trends Pharmacol Sci 1994; 15: 321-322.
  • 47 Pliska V. Models to explain dose-response relationships that exhibit a downturn phase. Trends Pharmacol Sci 1994; 15: 178-181.
  • 48 Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol 2013; 43: 580-606.
  • 49 Zhang X.-T., Ding L., Kang L.-G., Wang Z.-Y. Involvement of Er-alpha36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells. Oncol Rep 2012; 27: 2057-2065.
  • 50 Calabrese E.J., Baldwin L.A. Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 2001; 22: 285-291.
  • 51 Yokoyama K., Hayashi M., Mogi C., Sasakawa Y., Watanabe G., Taya K. et al. Dose-dependent effects of a glucocorticoid on protein production. Endocrine 2008; 55: 405-414.
  • 52 Motegi K., Harada K., Ohe G., Jones S.J., Ellis I.R., Crouch D.H. et al. Differential involvement of TGF-B1 in mediating the motogenic effects of TSP-1 on endothelial cells, fibroblasts and oral tumour cells. Exp Cell Res 2008; 314: 2323-2333.
  • 53 Takagi M., Atarashi K., Matsuoka H., Sugimoto T. A biphasic effect of noradrenaline on rennin release from rat juxtaglomerular cells in vitro is mediated by α1- and β-adrenoceptors. Endocrinology 1992; 132: 133-140.
  • 54 Mondillo C., Patrignani Z., Reche C., Rivera E., Pignataro O. Dual role of histamine in modulation of Leydig cell steroidogenesis via HRH1 and HRH2 receptor subtypes. Biol Reprod 2005; 73: 899-907.