Synlett 2008(12): 1777-1780  
DOI: 10.1055/s-2008-1078565
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper-Free Sonogashira Reaction Using Gold Nanoparticles Supported on Ce2O3, Nb2O5 and SiO2 under Microwave Irradiation

Rodrigo O. M. A. de Souzaa, Mariana S. Bittara, Laiza V. P. Mendesa, Carla Michele F. da Silvaa, Victor Teixeira da Silvab, O. A. C. Antunes*a
a Instituto de Química, CT Bl. A 641, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
Fax: +55(21)25627559; e-Mail: octavio@iq.ufrj.br;
b NUCAT/PEQ/COPPE/UFRJ, CT Bl. G, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
Further Information

Publication History

Received 1 February 2008
Publication Date:
02 July 2008 (online)

Abstract

In the present communication we wish to report a copper-free Sonogashira reaction catalyzed by gold-supported catalysts under microwave irradiation. Aryl and alkyl acetylenes were used and good yields were obtained with short reaction times when DMF was used as solvent. Three different supported gold catalysts were used and Au/SiO2 gave the best result for both aryl and alkyl acetylenes.

    References and Notes

  • 1a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • 1b Hierso JC. Doucet H. Angew. Chem. Int. Ed.  2007,  46:  835 
  • 2 Chinchilla R. Nájera C. Chem. Rev.  2007,  107:  874 
  • 3a Haruta M. Cattech  2002,  6:  102 
  • 3b Ishida T. Haruta M. Angew. Chem. Int. Ed.  2007,  46:  7154 
  • 3c Haruta M. Nature (London)  2005,  437:  1098 
  • 4a Hashmi ASK. Chem. Rev.  2007,  107:  3180 
  • 4b Marion N. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2750 
  • 4c Bond GC. Louis C. Thompson DT. Catalysis by Gold   Imperial College Press; London: 2006. 
  • 4d Widenhoefer RA. Han X. Eur. J. Org. Chem.  2006,  4555 
  • 4e Hashmi ASK. Hutchings GJ. Angew. Chem. Int. Ed.  2006,  45:  7896 
  • 4f Hashmi ASK. Angew. Chem. Int. Ed.  2005,  44:  6990 
  • 4g Astruc D. Lu F. Aranzes JR. Angew. Chem. Int. Ed.  2004,  44:  7852 
  • 4h Schrekker HS. Gelesky MA. Stracke MP. Schrekker CML. Machado G. Teixeira SR. Rubim JC. Dupont J. J. Colloid Interface Sci.  2007,  316:  189 
  • 4i Schelwies M. Dempwolff AL. Rominger F. Helmchen G. Angew. Chem. Int. Ed.  2007,  46:  5598 
  • 4j Hashmi ASK. Schäfer S. Wölfle M. Gil CD. Fischer P. Laguna A. Blanco MC. Gimeno MC. Angew. Chem. Int. Ed.  2007,  46:  6184 
  • 4k Deng X. Baker TA. Friend CM. Angew. Chem. Int. Ed.  2006,  45:  7075 
  • 4l Brouwer C. He C. Angew. Chem. Int. Ed.  2006,  45:  1744 
  • 4m Han X. Widenhoefer RA. Angew. Chem. Int. Ed.  2006,  45:  1747 
  • 4n Lemière G. Gandon V. Agenet N. Goddard P. de Kozak A. Aubert C. Fernsterbank L. Malacria M. Angew. Chem. Int. Ed.  2006,  45:  7559 
  • 4o Manea F. Houillon FB. Pasquato L. Scrimin P. Angew. Chem. Int. Ed.  2004,  43:  6165 
  • 4p Hasmi ASK. Schwarz L. Choi J.-H. Frost TM. Angew. Chem. Int. Ed.  2000,  39:  2285 
  • 4q Teles JH. Brode S. Chabanas M. Angew. Chem. Int. Ed.  1998,  37:  1415 
  • 5a Corma A. Gonzalez-Arellano C. Iglesias M. Perez-Ferreras S. Sanchez F. Synlett  2007,  1771 
  • 5b González-Arellano C. Abad A. Corma A. Garcia H. Iglesias M. Sánchez F. Angew. Chem. Int. Ed.  2007,  46:  1536 
  • 5c González-Arellano C. Corma A. Iglesias M. Sánchez F. J. Catal.  2006,  238:  497 
  • 5d Carrettin S. Guzman J. Corma A. Angew. Chem. Int. Ed.  2005,  44:  2242 
  • 5e Carrettin S. Corma A. Iglesias M. Sánchez F. Appl. Catal. A: Gen.  2005,  291:  247 
  • 6a Coelho AV. Souza ALF. Lima PG. Wardell JL. Antunes OAC. Appl. Organomet. Chem.  2008,  22:  39 
  • 6b Coelho AV. Souza ALF. Lima PG. Wardell JL. Antunes OAC. Tetrahedron Lett.  2007,  48:  7671 
  • 6c Senra JD. Malta LFB. Souza ALF. Medeiros ME. Aguiar LCS. Antunes OAC. Tetrahedron Lett.  2007,  48:  8153 
  • 6d Oliveira BL. Antunes OAC. Lett. Org. Chem.  2007,  4:  13 
  • 6e Estrada GOD. Souza ALF. Silva JFM. Antunes OAC. Catal. Commun.  2008,  9:  1734 
  • 6f Souza ALF. Silva LC. Oliveira BL. Antunes OAC. Tetrahedron Lett.  2008,  49:  3895 
  • 7a Andrews SP. Stepan AF. Tanaka H. Ley SV. Smith MD. Adv. Synth. Catal.  2005,  347:  647 
  • 7b Ji Y. Jain S. Davis RJ. J. Phys. Chem. B  2005,  109:  17232 
  • 7c Cassol CC. Umpierre AP. Machado G. Wolke SI. Dupont J. J. Am. Chem. Soc.  2005,  127:  3298 
  • 7d Yu K. Sommer W. Richardson J. Weck M. Jones CW. Adv. Synth. Catal.  2005,  347:  161 
  • 7e Weck M. Jones CW. Inorg. Chem.  2007,  46:  1865 
  • 7f Alimardanov A. Schmieder-van de Vondervoort L. de Vries AHM. de Vries JG. Adv. Synth. Catal.  2004,  346:  1812 
  • 8a Martins DL. Alvarez HM. Aguiar LCS. Antunes OAC. Lett. Org. Chem.  2007,  4:  253 
  • 8b Alvarez HM. Malta LFB. Herbst MH. Horn A. Antunes OAC. Appl. Catal. A: Gen.  207,  326:  82 
  • 8c Valdés RH. Aranda DAG. Alvarez HM. Antunes OAC. Lett. Org. Chem.  2007,  4:  35 
  • 8d Pimentel LCF. Souza ALF. Fernández TL. Wardell JL. Antunes OAC. Tetrahedron Lett.  2007,  48:  831 
  • 8e Alvarez HM. Barbosa DP. Fricks AT. Aranda DAG. Valdés RH. Antunes OAC. Org. Process Res. Dev.  2006,  10:  941 
  • 9a Loupy A. Microwaves in Organic Synthesis   Vol. 1:  Wiley-VCH; Weinheim: 2006. 
  • 9b Loupy A. Microwaves in Organic Synthesis   Vol. 2:  Wiley-VCH; Weinheim: 2006. 
  • 9c Kappe CO. Stadler A. Microwaves in Organic and Medicinal Chemistry   Wiley-VCH; Weinheim: 2005. 
  • 9d Dallinger D. Kappe CO. Chem. Rev.  2007,  107:  2563 
  • 9e Hosseini M. Stiasni N. Barbieri V. Kappe CO. J. Org. Chem.  2007,  72:  1417 
  • 9f Kremsner JM. Stadler A. Kappe CO. Top. Curr. Chem.  2006,  266:  233 
  • 9g Kappe CO. Larhed M. Angew. Chem. Int. Ed.  2005,  44:  7666 
  • 9h Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 9i Desai B. Kappe CO. Top. Curr. Chem.  2004,  242:  177 
10

A mixture of the aryl halide (1.00 mmol), Au-supported catalyst (3 mol%), phenylacetylene or 1-octyne (1.00 mmol) and K2CO3 (138 mg, 1.00 mmol) was mixed in DMF (5.0 mL). Microwave-assisted syntheses were conducted with a CEM Discover focussed microwave oven (150 W). After the reaction, usual aqueous workup and column chromatograph-ic purification process on silica gel (hexanes-EtOAc, 9:1) were carried out. The spectroscopic data of compounds 3, 8, 9, 13, 14 and 15 are as follows.
Compound 3: ¹H NMR (300 MHz, CDCl3): δ = 7.45-7.50 (m, 4 H), 7.20-7.25 (m, 6 H).
Compound 8: ¹H NMR (300 MHz, CDCl3): δ = 8.10 (m, 2 H), 7.95 (m, 2 H), 7.49-7.53 (m, 2 H), 7.20-7.25 (m, 3 H).
Compound 9: ¹H NMR (300 MHz, CDCl3): δ = 7.51 (m, 2 H), 7.46 (m, 2 H), 7.18-7.23 (m, 3 H), 6.84 (m, 2 H), 3.80 (s, 3 H).
Compound 13: ¹H NMR (300 MHz, CDCl3): δ = 7.25 (m, 1 H), 7.13 (m, 4 H), 2.38 (m, 2 H), 1.40 (m, 8 H), 0.89 (m, 3 H).
Compound 14: ¹H NMR (300 MHz, CDCl3): δ = 8.10 (m, 2 H), 7.89 (m, 2 H), 2.35 (m, 2 H), 1.33 (m, 8 H), 0.85 (m, 3 H).
Compound 15: ¹H NMR (300 MHz, CDCl3): δ = 7.36 (m, 2 H), 6.79 (m, 2 H), 3.55 (s, 3 H), 2.40 (m, 2 H), 1.45 (m, 8 H), 1.11 (m, 3 H).
Commercial Nb2O5 (49 m²/g¹) and SiO2 (200 m²/g), kindly provided by CBMM and DEGUSA, were used as received. CeO2 (20m²/g) was obtained by calcination of Ce(III) nitrate hexahydrate (ACROS, 99.5%) at 800 ˚C/h in a conventional oven. Gold was incorporated into the supports using the deposition-precipitation method at a constant pH of 8 by addition of Na2CO3 and using a HAuCl4 (ACROS) solution as gold source. Characterization of the catalysts by small-angle X-ray scattering (SAXS) revealed gold particle sizes of 4.9, 5.9 and 4.2 nm for Nb2O5, CeO2 and SiO2 supports, respectively.