Subscribe to RSS
DOI: 10.1055/s-2008-1078510
Double Functionalization of N-Boc-3-(Tosylmethyl)indole Exploiting the Activating Properties of the Tosyl Group
Publication History
Publication Date:
19 June 2008 (online)

Abstract
The anion prepared from N-Boc-3-(tosylmethyl)indole using NaH in DMF can be readily functionalized by reaction with various electrophiles. The obtained sulfonyl indoles, upon removal of the N-protecting group, undergo nucleophilic attack via a vinylogous imino derivative, leading to branched 3-substituted indoles.
Key words
carbanions - eliminations - indoles - nucleophilic additions - sulfones
- 1
Simpkins NS. Sulphones in Organic Synthesis Pergamon Press; Oxford: 1993. - 2
Nájera C.Sansano JM. Recent Res. Dev. Org. Chem. 1998, 2: 637 - 3
Nájera C.Yus M. Tetrahedron 1999, 55: 10547 -
4a
Das I.Pathak T. Org. Lett. 2006, 8: 1303 -
4b
Berkowitz DB.Bose M.Asher N. Org. Lett. 2001, 3: 2009 -
4c For a classical procedure,
see:
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1345 - 5
Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002, 2563 -
6a
Nenajdenko VG.Krasovskiy AL.Balenkova ES. Tetrahedron 2007, 63: 12481 -
6b
Meadows DC.Gervay-Hague J. Med. Chem. Rev. 2006, 26: 793 -
6c
Back TG. Tetrahedron 2001, 57: 5263 - 7
Petrini M. Chem. Rev. 2005, 105: 3949 - 8
Petrini M.Torregiani E. Synthesis 2007, 159 - For some papers dealing with alkylation of α-amido sulfones and elimination to the corresponding enecarbamates, see:
-
9a
Alonso DA.Alonso E.Nájera C.Ramón DJ.Yus M. Tetrahedron 1997, 53: 4835 -
9b
Berthon L.Uguen D. Tetrahedron Lett. 1985, 26: 3975 -
10a
Ballini R.Palmieri A.Petrini M.Torregiani E. Org. Lett. 2006, 8: 4093 -
10b
Palmieri A.Petrini M. J. Org. Chem. 2007, 72: 1863 -
10c
Ballini R.Palmieri A.Petrini M.Shaikh RR. Adv. Synth. Catal. 2008, 350: 129 -
11a For
some recent applications of gramines in synthesis, see:
Semenov BB.Granik VG. Pharm. Chem. J. 2004, 38: 287 -
11b
de la Herrán G.Segura A.Csákÿ AG. Org. Lett. 2007, 9: 961 -
11c
Semenov BB.Novikov KA.Lysenko KA.Kachala VV. Tetrahedron Lett. 2006, 47: 3479 -
11d
Low KH.Magomedov NA. Org. Lett. 2005, 7: 2003 - 12
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Synlett 2005, 1199 -
13a
Faulkner DJ. Nat. Prod. Rep. 2002, 19: 1 -
13b
Saxton JE. In The AlkaloidsCordell GA. Academic Press; New York: 1998. -
13c
Sundberg RJ. Indoles Academic Press; New York: 1997. -
13d
Saxton JE. Nat. Prod. Rep. 1997, 559 - 14
Liu R.Zhang P.Gan T.Cook JM. J. Org. Chem. 1997, 62: 7447 -
19a
Jones DT.Hartman GT.Williams RM. Tetrahedron Lett. 2007, 48: 1291 -
19b
Teng X.Degterev A.Jagtap P.Xing X.Choi S.Denu R.Yuan J.Cuny GD. Bioorg. Med. Chem. Lett. 2005, 15: 503 -
19c
Williams RM.Cao J.Tsujishima H.Cox RJ. J. Am. Chem. Soc. 2003, 125: 12172 -
19d
Marcq V.Mirand C.Decarme M.Emonard H.Hornebeck W. Bioorg. Med. Chem. Lett. 2003, 13: 2843
References and Notes
Synthesis of N -Boc-3-(Tosylmethyl) indole (11) To a solution of N-Boc-3-(bromomethyl) indole (5 mmol, 1.55 g) in DMF (10 mL), Bu4NI (0.5 mmol, 0.18 g) and TolSO2Na were added at r.t. After stiring for 2 h at this temperature, cold H2O (30 mL) was added and the mixture was extracted with EtOAc (3 × 30 mL). The organic phase was dried over MgSO4, and after removal of the solvent the residue was purified by column chromatography (hexanes-EtOAc, 8:2) giving 1.54 g (80% yield) of pure 11 as a white solid; mp 124-126 ˚C. IR (Nujol): 1374, 1151 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.63 (s, 9 H), 2.37 (s, 3 H), 4.42 (s, 2 H), 7.08-7.12 (m, 1 H), 7.19 (d, 2 H, J = 10.7 Hz), 7.21-7.28 (m, 2 H), 7.45 (s, 1 H), 7.59 (d, 2 H, J = 8.5 Hz), 8.09 (d, 1 H, J = 8.1). ¹³C NMR (75 MHz, CDCl3): δ = 21.7, 28.2, 54.0, 84.3, 107.9, 115.2, 119.0, 122.9, 124.8, 126.2, 127.4, 128.7, 129.7,135.2, 136.7, 144.9, 149.8.
16
Reaction of N
-Boc-3-(Tosylmethyl)
indole (11) with Electrophiles
To
a mixture of NaH (2 mmol) in anhyd DMF (5 mL), sulfonyl indole 11 (1 mmol) was added at 0 ˚C.
After 20 min stirring at this temperature, the electrophile (1.1
mmol) was added and stirring was continued for the appropriate time
at 0 ˚C (see Table
[¹]
).
The mixture was then cautiously quenched by addition of cold H2O
and then acidified with AcOH. After extraction with Et2O
(3 × 15 mL) the organic phase was dried
over MgSO4 and after removal of the solvent the residue
was purified by column chromatography (hexanes-EtOAc, 8:2).
Spectroscopic Data for Representative Compounds
Compound 12a: mp 58-60 ˚C.
IR (Nujol): 1598, 1370, 1155 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.67 (s,
9 H), 2.35 (s, 3 H), 2.83-3.06 (m, 1 H), 3.10-3.28
(m, 1 H), 4.39 (dd, 1 H, J = 4.0,
11.4 Hz), 4.92-5.12 (m, 2 H), 5.52-5.75 (m, 1
H), 7.05-7.21 (m, 3 H), 7.23-7.37 (m, 2 H), 7.44-7.60
(m, 3 H), 8.09 (d, 1 H, J = 8.4
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 21.8,
28.4, 32.6. 63.4, 84.5, 112.2, 115.3, 118.6, 119.4, 122.9, 124.8,
126.7, 129.4, 129.6, 133.3, 134.4, 135.3, 144.9, 149.5.
Compound 12f: mp 55-57 ˚C.
IR (Nujol): 3310, 2133, 1368, 1151 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.67 (s,
9 H), 1.85 (s, 1 H), 2.36 (s, 3 H), 3.04-3.11 (m, 1 H),
3.27-3.32 (m, 1 H), 4.56 (dd, 1 H, J = 4.1,
10.7 Hz), 7.10-7.17 (m, 3 H), 7.20-7.27 (m, 2
H), 7.52-7.62 (m, 3 H), 8.10 (d, 1 H, J = 8.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 19.5,
21.8, 28.4, 62.2, 71.3, 79.3, 84.6, 115.4, 119.3, 123.0, 124.9, 126.7,
129.4, 129.5, 129.6, 129.8, 133.9, 135.2, 145.3, 149.5.
Compound 12l: mp 56-58 ˚C.
IR (Nujol): 2248, 1376, 1153 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.67 (s,
9 H), 2.35 (s, 3 H), 2.46-2.62 (m, 2 H), 2.80-2.96
(m, 2 H), 4.46 (dd, 1 H, J = 4.7,
10.7 Hz), 7.12-7.18 (m, 3 H), 7.26-7.38 (m, 2
H), 7.51-7.60 (m, 3 H), 8.10 (d, 1 H, J = 8.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 15.5,
21.7, 24.7, 28.3, 62.3, 84.9, 110.5, 115.5, 118.3, 119.3, 123.3,
125.2, 126.7, 129.3, 129.8, 134.1, 137.8, 145.3, 149.7.
Compound 12m: mp 52-54 ˚C.
IR (Nujol): 1742, 1374, 1156 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.66 (s,
9 H), 2.34 (s, 3 H), 2.36-2.49 (m, 2 H), 2.67-2.78
(m, 2 H), 3.58 (s, 3 H), 4.52 (dd, 1 H, J = 4.3,
10.7 Hz), 7.10-7.20 (m, 3 H), 7.22-7.34 (m, 2
H), 7.48 (s, 1 H), 7.55 (d, 2 H, J = 8.1
Hz), 8.09 (d, 1 H, J = 8.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 21.7,
24.1, 28.3, 31.1, 51.8, 62.5, 84.6, 111.9, 115.4, 119.4, 123.0,
125.0, 126.6, 129.3, 129.6, 134.5, 135.4, 144.9, 149.8, 172.8.
The free NH on the indole ring is mandatory for a successful process since none of the nucleophilic reagents tested in this reaction gives any result with N-Boc indoles 12.
18
Deprotection of N
-Boc Sulfonyl
Indoles 12 and Their Reaction with Nucleophiles
N-Boc indole 12 (1
mmol) was dissolved in a mixture of TFA-CH2Cl2 (1:1,
10 mL) and stirring was continued for 3 h at r.t. After evaporation
of the solvents at reduced pressure, the crude sulfonyl indole was
purified by column chromatography (hexanes-EtOAc, 8:2).
Reaction of sulfonyl indoles 13 with nucleophiles
was carried out according to our previously published procedure
(ref. 10c).
Spectroscopic Data for
Representative Compounds
Compound 14a:
oil. IR (neat): 3393, 1739, 1603, 1463 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.86 (t,
2.3 H, J = 7.3
Hz), 1.27 (t, 2.5 H, J = 6.8
Hz), 1.28 (t, 1.2 H, J = 7.3
Hz), 2.55-2.69 (m, 2 H), 3.84-3.92 (m, 3 H), 4.16-4.28
(m, 3 H), 4.87-4.99 (m, 2 H), 5.61-5.68 (m, 1
H), 7.02 (d, 1 H, J = 2.1
Hz), 7.08-7.18 (m, 2 H), 7.31 (d, 1 H, J = 7.7
Hz), 7.66 (d, 1 H, J = 7.7
Hz), 8.24 (br s, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 13.8, 14.3, 37.0,
38.0, 57.6, 57.6, 61.4, 61.7, 111.4, 115.2, 116.9, 119.5, 119.6,
122.1, 122.8, 127.0, 136.1, 136.4, 168.6, 168.9.
Compound 14b: oil. IR (neat): 3389, 1622, 1583,
1458 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 1.51 (s, 3 H),
1.65 (s, 3 H), 2.33-2.39 (m, 1 H), 2.59-2.68 (m,
1 H), 3.82 (dd, 1 H, J = 3.4,
11.5 Hz), 4.80 (d, 1 H, J = 9.9
Hz), 4.95 (dd, 1 H, J = 1.3,
17.1 Hz), 5.48-5.55 (m, 1 H), 7.04 (d, 1 H, J = 2.6 Hz),
7.13-7.23 (m, 2 H), 7.37 (d, 1 H, J = 8.1
Hz), 7.68 (d, 1 H, J = 7.7
Hz), 8.19 (br s, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 21.8, 26.8, 34.9,
45.7, 93.0, 111.5, 113.3, 116.7, 119.7, 120.1, 122.4, 123.4, 128.3,
136.1, 136.2.