Synlett 2008(10): 1449-1454  
DOI: 10.1055/s-2008-1078423
LETTER
© Georg Thieme Verlag Stuttgart · New York

Friedel-Crafts Alkylation of Nitrogen Heterocycles Using [Bmim][OTf] as a Catalyst and Reaction Medium

M. Lakshmi Kantam*a, Rajashree Chakravartia, B. Sreedhara, Suresh Bhargavab
a Inorganic & Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
Fax: +91(40) 27160921; e-Mail: mlakshmi@iict.res.in;
b School of Applied Sciences, RMIT University, Melbourne, Australia
Further Information

Publication History

Received 19 March 2008
Publication Date:
19 May 2008 (online)

Abstract

Friedel-Crafts alkylation of nitrogen heterocycles, such as indoles and pyrroles, can be carried out in ionic liquids under mild conditions to afford the corresponding alkylated product in moderate to good yields

    References and Notes

  • 1a The Alkaloids   Specialist Periodical Reports, The Chemical Society; London: 1971. 
  • 1b Saxton JE. Nat. Prod. Rep.  1989,  6:  1 
  • 1c Glennon RA. J. Med. Chem.  1997,  40:  1 
  • 1d Jung ME. Slowinski F. Tetrahedron Lett.  2001,  42:  6835 
  • 1e Walsh T. Toupence RB. Ujjainwala F. Young JR. Goulet MT. Tetrahedron  2001,  57:  5233 
  • 1f Russell MGN. Baker RJ. Barden L. Beer MS. Bristow L. Howard HB. Broughton B. Knowles M. McAllister G. Patel S. Castro JL. J. Med. Chem.  2001,  44:  3881 
  • 1g Zhang H.-C. Ye H. Moretto AF. Brumfield KK. Maryanoff BE. Org. Lett.  2000,  2:  89 
  • 1h Lipshutz BH. Chem. Rev.  1986,  86:  795 
  • 2 Jones RA. Bean GP. The Chemistry of Pyrroles   Academic Press; London: 1977. 
  • 3a Parker RE. Isaacs NS. Chem. Rev.  1959,  59:  737 
  • 3b Bonini C. Righi G. Synthesis  1994,  225 
  • 3c Paknikar SK. Kirtane JG. Tetrahedron  1983,  39:  2323 
  • 3d Smith JG. Synthesis  1984,  629 
  • 3e Yadav JS. Reddy BVS. Parimala G. Synlett  2002,  1143 
  • 4a Organic High Pressure Chemistry   le Noble WJ. Elsevier; Amsterdam: 1988. 
  • 4b Matsumoto K. Sera A. Uchida T. Synthesis  1985,  1 
  • 4c Kotsuki H. Nishiuchi M. Kobayashi S. Nishizawa H. J. Org. Chem.  1990,  55:  2969 
  • 4d Kotsuki H. Hayashida K. Shimanouchi T. Nishizawa H. J. Org. Chem.  1996,  61:  984 
  • 5 Tanis SP. Raggon JW. J. Org. Chem.  1987,  52:  819 
  • 6 Kotsuki H. Teraguchi M. Shimomoto N. Ochi M. Tetrahedron Lett.  1996,  37:  3727 
  • 7a Bandini M. Cozzi PG. Melchiorre P. Umani-Ronchi A. J. Org. Chem.  2002,  67:  5386 
  • 7b Yadav JS. Reddy BVS. Abraham S. Sabitha G. Synlett  2002,  1550 
  • 8 Bandini M. Cozzi PG. Melchiorre P. Umani-Ronchi A. Angew. Chem. Int. Ed.  2004,  43:  84 
  • 9 Kantam ML. Laha S. Yadav J. Sreedhar B. Tetrahedron Lett.  2006,  47:  6213 
  • 10 Bandgar BP. Patil AV. Tetrahedron Lett.  2007,  48:  173 
  • 11 Das B. Thirupathi P. Kumar RA. Reddy KR. Catal. Commun.  2008,  9:  635 
  • 12a Welton T. Chem. Rev.  1999,  99:  2071 
  • 12b Dupont J. de Souza RF. Saurez PAZ. Chem. Rev.  2002,  102:  3667 
  • 12c Wasserscheid P. Kiem W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 12d Wasserscheid P. Welton T. Ionic Liquids in Synthesis   Wiley-VCH; Weinheim: 2003. 
  • 13a Gordon CM. Appl. Catal., A  2001,  222:  101 
  • 13b Sheldon R. Chem. Commun.  2001,  2399 
  • 13c Welton T. Coord. Chem. Rev.  2004,  248:  2459 
  • 13d Jain N. Kumar A. Chauhan S. Chauhan SMS. Tetrahedron  2005,  61:  1015 
  • 14a Song CE. Shim WH. Roh EJ. Lee S. Choi JH. Chem. Commun.  2001,  1695 
  • 14b Chen SL. Ji SL. Loh TP. Tetrahedron Lett.  2003,  44:  2405 
  • 14c Zerth HM. Leonard NM. Mohan RS. Org. Lett.  2003,  5:  55 
  • 14d Fraile JM. Garcia JI. Herrerias CI. Mayoral JA. Reiser O. Vaultier M. Tetrahedron Lett.  2004,  45:  6765 
  • 14e Park SB. Alper H. Chem. Commun.  2004,  1306 
  • 14f Earle MJ. Katdare SP. Seddon KR. Org. Lett.  2004,  6:  707 
  • 14g Lancaster NL. Welton T. J. Org. Chem.  2004,  69:  5986 
  • 14h Ranu BC. Benerjee S. Org. Lett.  2005,  7:  3049 
  • 14i Li W.-J. Lin X.-F. Li G.-L. Wang Y.-G. Synlett  2005,  2003 
  • 14j Rencurosi A. Lay L. Russo G. Caneva E. Poletti L. Carbohydr. Res.  2006,  341:  903 
  • 14k Kantam ML. Neelima B. Reddy CV. J. Mol. Catal. A: Chem.  2006,  256:  269 
  • 14l Vercher E. Orchilles V. Miguel PJ. Martinez-Andreu A. J. Chem. Eng. Data  2007,  52:  1468 
  • 14m Yadav JS. Reddy BVS. Basak AK. Narsaiah AV. Tetrahedron Lett.  2003,  44:  1047 
  • 14n Xu J.-M. Wu Q. Zhang Q.-Y. Zhang F. Lin X.-F. Eur. J. Org. Chem.  2007,  1798 
  • 15a Suaarez PAZ. Dullius JEL. Einloft S. Dupont J. de Souza RF. Polyhedron  1996,  15:  1217 
  • 15b Park S. Kazlauskas RJ. J. Org. Chem.  2001,  66:  8395 
  • 15c Verma RS. Namboodiri VV. Pure Appl. Chem.  2001,  73:  1309 
16

General Procedure for the Friedel-Crafts Alkylation of N-Heterocycles Using [Bmim][OTf] To a stirred solution of indole (1.2 mmol, 142 mg) in ionic liquid (1.2 mmol, 0.5mL), styrene oxide (1.0 mmol, 120 mg) was added under nitrogen atmosphere and stirred for 1.5 h at r.t. After completion of the reaction, as monitored by TLC, the crude product was extracted with Et2O (3 × 10 mL). The combined ether extracts were concentrated in vacuo and the resulting product was purified by column chromatography on silica gel (100-200 mesh) with EtOAc-n-hexane (1:4) as eluent to afford pure 2-(3-indolyl)-2-phenylethanol (Table 2, entry 1); yield 85%. 1H NMR (200 MHz, CDCl3): δ = 1.61 (br, 1 H), 4.18-4.23 (m, 2 H), 4.50 (t, J = 6.7 Hz, 1 H), 7.03-7.48 (m, 10 H), 8.11 (br, 1 H). MS (EI): m/z = 237 (25), 206 (100), 178 (30), 128 (15), 102 (10), 77 (15), 63 (5), 51 (11). Other known products were identified by comparison with the data in the literature, see ref. 7 and 10. The ionic liquid was dried under vacuum and preserved for the next run.

17

Spectroscopic and analytical data of new compounds.
2-(3-Indolyl)-2-(4-flourophenyl)ethanol (Table 3, Entry 2)
Yield 82%. 1H NMR (300 MHz, CDCl3): δ = 1.81 (1 H, br), 4.06-4.26 (2 H, m), 4.44 (1 H, t, J = 6.7 Hz), 6.90-7.37 (9 H, m), 8.05 (1 H, br). 13C NMR (75 MHz, CDCl3): δ = 44.83, 66.36, 111.28, 115.23, 115.53, 115.84, 119.30, 119.63, 121.90, 122.42, 126.84, 129.69 (2), 136.53, 137.43, 163.33. MS (EI): m/z (rel. intensity) = 255 (13), 224 (100), 222 (14), 196 (10), 177 (7), 77 (12), 63 (13), 41 (14). IR (neat): 3578, 3419, 3069, 2885, 1623, 1556, 1501, 1462, 1412, 1351, 1250, 1106, 1070, 1017, 754 cm-1. Anal. Calcd for C16H14FNO: C, 70.72; H, 5.19; N, 5.15. Found: C, 70.76; H, 5.24; N, 5.11.
2-(3-Indolyl)-2-(naphthyl)ethanol (Table 3, Entry 4)
Yield 78%. 1H NMR (300 MHz, CDCl3): δ = 1.62 (1 H, br), 4.17-4.25 (2 H, m), 4.46 (1 H, t, J = 6.7 Hz), 7.00-7.47 (12 H, m), 8.10 (1 H, br). 13C NMR (75 MHz, CDCl3): δ = 44.96, 66.41, 111.09, 115.36, 119.53, 119.84, 121.86, 122.18, 126.68, 126.82, 126.91, 128.22, 128.53, 129.14, 129.60, 136.61, 137.03, 141.73. MS (EI): m/z (rel. intensity) = 287 (16), 283 (19), 218 (7), 185 (9), 171 (10), 155 (12), 144 (13). IR (neat): 3546, 3409, 3106, 2980, 1614, 1535, 1308, 1061, 1445, 1306, 1077, 1029,752 cm-1. Anal. Calcd for C20H17NO: C, 83.59; H, 5.96; N, 4.87. Found: C, 83.62; H, 5.98; N, 4.80.
2-(2-Pyrrolyl)-2-(4-fluorophenyl)ethanol (Table 4, Entry 2) Yield 80%. 1H NMR (300 MHz, CDCl3): δ = 1.52 (1 H, br), 3.92-4.05 (2 H, m), 4.07-4.10 (1 H, m), 5.91-5.93 (1 H, m), 6.10 (1 H, dd, J = 6.0, 3.0 Hz), 6.70 (1 H, m), 7.18 (2 H, d, J = 8.8 Hz), 7.34 (2 H, d, J = 8.8 Hz), 8.16 (1 H, br). 13C NMR (75 MHz, CDCl3): δ = 57.11, 67.78, 105.92, 108.20, 115.38, 117.41, 118.51, 129.66, 129.75, 129.83, 136.42, 161.76. MS (EI): m/z (rel. intensity) = 205 (15), 174 (100), 154 (5), 146 (17), 127 (14), 91 (27), 78 (18), 51 (16). IR (neat): 3356, 3005, 1706, 1495, 1409, 1095, 1062, 1011, 831, 758 cm-1. Anal. Calcd for C12H12FNO: C, 70.23; H, 5.89; N, 6.82. Found: C, 70.26; H, 5.91; N, 6.79.
2-(2-Pyrrolyl)-2-(4-chlorophenyl)ethanol (Table 4, Entry 3) Yield 80%. 1H NMR (300 MHz, CDCl3): δ = 1.52 (1 H, br), 3.90-4.04 (2 H, m), 4.05-4.12 (1 H, m), 5.91-5.94 (1 H, m), 6.08 (1 H, dd, J = 6.0, 3.0 Hz), 6.64 (1 H, m), 7.25 (2 H, d, J = 8.8 Hz), 7.29 (2 H, d, J = 8.8 Hz), 8.13 (1 H, br). 13C NMR (75 MHz, CDCl3): δ = 56.28, 67.14, 107.0, 109.05, 115.16, 119.08, 130.62, 133.17, 133.24, 156.02. MS (EI): m/z (rel. intensity) = 221 (13), 190 (100), 154 (36), 141 (10), 127 (19), 97 (7), 73 (28), 57 (22), 43 (36). IR (neat): 3346, 2925, 1692, 1490, 1406, 1090, 1058, 1015, 826, 761 cm-1. Anal. Calcd for C12H12ClNO: C, 65.02; H, 5.46; N, 6.32. Found: C, 65.06; H, 5.49; N, 6.29.
2-(2-Pyrrolyl)-2-(4-naphthyl)ethanol (Table 4, Entry 4) Yield 78%. 1H NMR (300 MHz, CDCl3): δ = 1.52 (1 H, br), 4.15 (1 H, dd, J = 5.7, 10.6 Hz), 4.25 (1 H, dd, J = 6.6, 10.6 Hz), 4.36 (1 H, t, J = 7.5 Hz), 6.0 (1 H, dd, J = 6.0, 3.0 Hz), 6.18 (1 H, m), 6.71 (1 H, m), 7.34-7.82 (7 H, m), 8.38 (1 H, br). 13C NMR (75 MHz, CDCl3): δ = 47.16, 66.39, 105.95, 107.03, 117.36, 125.36, 125.82, 125.91, 126.26, 126.40, 127.57, 127.74, 128.56, 132.63, 137.84. MS (EI): m/z (rel. intensity) = 238 (75), 235 (28), 220 (28), 219 (15), 218 (9), 91 (27), 199 (6), 171 (12), 153 (11), 141 (19). IR (neat): 3498, 3349, 3040, 2995, 2925, 1692, 1490, 1241, 1090, 1058, 1015, 826, 711 cm-1. Anal. Calcd for C16H15NO: C, 80.98; H, 6.37; N, 5.90. Found: C, 80.95; H, 6.35; N, 5.92.