References and Notes
For reviews on aqueous-switching of organic transformations, see:
<A NAME="RY00308ST-1A">1a</A>
Li C.-J.
Chan T.-H.
Organic Reactions in Aqueous Media
Wiley;
New York:
1997.
<A NAME="RY00308ST-1B">1b</A>
Grieco PA.
Organic Synthesis in Water
Kluwer Academic Publishers;
Dordrecht:
1997.
<A NAME="RY00308ST-1C">1c</A>
Herrmann WA.
Kohlpaintner CW.
Angew. Chem., Int. Ed. Engl.
1993,
32:
1524
<A NAME="RY00308ST-1D">1d</A>
Lindström UM.
Chem. Rev.
2002,
102:
2751
For reviews on heterogeneous-switching of organic transformations, see:
<A NAME="RY00308ST-2A">2a</A>
Bailey DC.
Langer SH.
Chem. Rev.
1981,
81:
109
<A NAME="RY00308ST-2B">2b</A>
Shuttleworth SJ.
Allin SM.
Sharma PK.
Synthesis
1997,
1217
<A NAME="RY00308ST-2C">2c</A>
Shuttleworth SJ.
Allin SM.
Wilson RD.
Nasturica D.
Synthesis
2000,
1035
<A NAME="RY00308ST-2D">2d</A>
Dörwald FZ.
Organic Synthesis on Solid Phase
Wiley-VCH;
Weinheim:
2000.
<A NAME="RY00308ST-2E">2e</A>
Leadbeater NE.
Marco M.
Chem. Rev.
2002,
102:
3217
<A NAME="RY00308ST-2F">2f</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RY00308ST-2G">2g</A>
McNamara CA.
Dixon MJ.
Bradley M.
Chem. Rev.
2002,
102:
3275
<A NAME="RY00308ST-2H">2h</A>
Chiral Catalyst Immobilization and Recycling
De Vos DE.
Vankelecom IFJ.
Jacobs PA.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RY00308ST-2I">2i</A>
Fan Q.-H.
Li Y.-M.
Chan ASC.
Chem. Rev.
2002,
102:
3385
For recent reviews on solid-phase reactions using palladium catalysts, see:
<A NAME="RY00308ST-3A">3a</A>
Uozumi Y.
Hayashi T.
Solid-Phase Palladium Catalysis for High-Throughput Organic Synthesis, In Handbook of Combinatorial Chemistry
Nicolaou KC.
Hanko R.
Hartwig W.
Wiley-VCH;
Weinheim:
2002.
Chap. 19.
<A NAME="RY00308ST-3B">3b</A>
Uozumi Y.
Top. Curr. Chem.
2004,
242:
77
For studies on polymer-supported catalysts from the author’s group, see:
<A NAME="RY00308ST-4A">4a</A> Cross-coupling:
Uozumi Y.
Danjo H.
Hayashi T.
J. Org. Chem.
1999,
64:
3384
<A NAME="RY00308ST-4B">4b</A> Carbonylation reaction:
Uozumi Y.
Watanabe T.
J. Org. Chem.
1999,
64:
6921
<A NAME="RY00308ST-4C">4c</A> Michael addition:
Shibatomi K.
Nakahashi T.
Uozumi Y.
Synlett
2000,
1643
Suzuki-Miyaura coupling:
<A NAME="RY00308ST-4D">4d</A>
Uozumi Y.
Nakai Y.
Org. Lett.
2002,
4:
2997
<A NAME="RY00308ST-4E">4e</A>
Uozumi Y.
Kikuchi M.
Synlett
2005,
1775
<A NAME="RY00308ST-4F">4f</A> Heck reaction:
Uozumi Y.
Kimura T.
Synlett
2002,
2045
<A NAME="RY00308ST-4G">4g</A> Rhodium catalysis:
Uozumi Y.
Nakazono M.
Adv. Synth. Catal.
2002,
344:
274
(Wacker cyclization):
<A NAME="RY00308ST-4H">4h</A>
Hocke H.
Uozumi Y.
Synlett
2002,
2049
<A NAME="RY00308ST-4I">4i</A>
Hocke H.
Uozumi Y.
Tetrahedron
2003,
59:
619
<A NAME="RY00308ST-4J">4j</A> Sonogashira reaction:
Uozumi Y.
Kobayashi Y.
Heterocycles
2003,
59:
71
Oxidation:
<A NAME="RY00308ST-4K">4k</A>
Uozumi Y.
Nakao R.
Angew. Chem. Int. Ed.
2003,
42:
194
<A NAME="RY00308ST-4L">4l</A>
Uozumi Y.
Nakao R.
Angew. Chem.
2003,
115:
204
<A NAME="RY00308ST-4M">4m</A>
Yamada YMA.
Arakawa T.
Hocke H.
Uozumi Y.
Angew. Chem. Int. Ed.
2007,
46:
704
<A NAME="RY00308ST-4N">4n</A> Reduction:
Nakao R.
Rhee H.
Uozumi Y.
Org. Lett.
2005,
7:
163
<A NAME="RY00308ST-4O">4o</A> Alkylation:
Yamada YMA.
Uozumi Y.
Org. Lett.
2006,
8:
1375
For studies on π-allylic transformations with polymer-supported complex catalysts
in water, see:
<A NAME="RY00308ST-5A">5a</A>
Uozumi Y.
Danjo H.
Hayashi T.
Tetrahedron Lett.
1997,
38:
3557
<A NAME="RY00308ST-5B">5b</A>
Danjo H.
Tanaka D.
Hayashi T.
Uozumi Y.
Tetrahedron
1999,
55:
14341
<A NAME="RY00308ST-5C">5c</A>
Uozumi Y.
Suzuka T.
Kawade R.
Takenaka H.
Synlett
2006,
2109
For studies on heterogeneous aquacatalytic asymmetric π-allylic transformations with
polymer-supported complex catalysts in water, see:
<A NAME="RY00308ST-6A">6a</A> Alkylation:
Uozumi Y.
Danjo H.
Hayashi T.
Tetrahedron Lett.
1998,
39:
8303
<A NAME="RY00308ST-6B">6b</A> Reduction with monodentate phosphine (MOP):
Hocke H.
Uozumi Y.
Tetrahedron
2004,
60:
9297
<A NAME="RY00308ST-6C">6c</A> Alkylation:
Uozumi Y.
Shibatomi K. J. Am. Chem. Soc.
2001,
123:
2919
<A NAME="RY00308ST-6D">6d</A> Amination:
Uozumi Y.
Tanaka H.
Shibatomi K.
Org. Lett.
2004,
6:
281
<A NAME="RY00308ST-6E">6e</A> Cyclization:
Nakai Y.
Uozumi Y.
Org. Lett.
2005,
7:
291
<A NAME="RY00308ST-6F">6f</A> Etherification:
Uozumi Y.
Kimura M.
Tetrahedron: Asymmetry
2006,
17:
161
<A NAME="RY00308ST-6G">6g</A> Nitromethylation:
Uozumi Y.
Suzuka T.
J. Org. Chem.
2006,
71:
8644
<A NAME="RY00308ST-6H">6h</A>
Kobayashi Y.
Tanaka D.
Danjo H.
Uozumi Y.
Adv. Synth. Catal.
2006,
348:
1561
<A NAME="RY00308ST-6I">6i</A>
Uozumi Y.
Pure Appl. Chem.
2007,
79:
1481
For recent reviews on asymmetric π-allylic substitution, see:
<A NAME="RY00308ST-7A">7a</A>
Acemoglu L.
Williams JMJ.
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
de Meijere A.
Wiley;
New York:
2002.
<A NAME="RY00308ST-7B">7b</A>
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
<A NAME="RY00308ST-8A">8a</A>
Taniimori S.
Tsuji Y.
Kirihara M.
Biosci., Biotechnol., Biochem.
2002,
66:
660
<A NAME="RY00308ST-8B">8b</A>
Song ES.
Yang JW.
Roh EJ.
Lee S.-G.
Han H.
Angew. Chem. Int. Ed.
2002,
41:
3852
<A NAME="RY00308ST-8C">8c</A>
Trost BM.
Van Vranken DL.
Bingel C.
J. Am. Chem. Soc.
1992,
114:
9327
<A NAME="RY00308ST-9D">9d</A> Trost B. M., Pulley S. R., Bingel C.; Tetrahedron Lett.; 1995, 36: 8737
<A NAME="RY00308ST-10">10</A>
Tenta Gel SNH2 (purchased from Rapp Polymere) was used as the polymer support.
<A NAME="RY00308ST-11">11</A>
Chemical yield of the monosubstituted product 4 was lowered to <30% with Li2CO3, NaHCO3, Na2CO3, or K2CO3.
<A NAME="RY00308ST-12">12</A>
The absolute configuration of 4 was determined by chemical correlation with (1R,4S)-cis-1-acetoxy-4-[bis(methoxy-carbonyl)methyl]-2-cyclopentene (see ref. 8a).
<A NAME="RY00308ST-13">13</A>
Nishiyama H.
Sakata N.
Sugimoto H.
Motoyama Y.
Wakita H.
Nagase H.
Synlett
1998,
930
<A NAME="RY00308ST-14">14</A>
The absolute configuration of 6a was determined to be 1R,4S by measurement of the specific rotation (see, ref. 12). The configurations of 6b-g were tentatively assigned on the basis of the mechanistic similarity of the asymmetric
induction, as depicted in Table
[1]
.
<A NAME="RY00308ST-15">15</A>
Palladium-Catalyzed Asymmetric Desymmetrization of meso
-Cycloalkene-1,4-diacetate: Reaction conditions and results are shown in Table
[1]
. A typical procedure is given for the reaction with cis-1,4-diacetoxycyclopentene (meso-2) and phenol (a) in H2O (entry 3).
To a mixture of the catalyst 1 (89 mg, 0.025 mmol) and meso-2 (92 mg, 0.5 mmol) in H2O (2.5 mL) was added phenol (48 mg, 0.5 mmol), and the mixture was shaken at 0 °C
for 18 h. The reaction mixture was filtered and the recovered resin beads were rinsed
with EtOAc (3 ×). The combined filtrate was dried over anhyd Na2SO4. The solvent was evaporated and the residue was chromatographed on silica gel (hexane-EtOAc,
10:1) to give 1-acetoxy-4-phenoxycyclopentene (6a; 70 mg, 64% yield) and 1,4-diphenoxycyclopentene (8; 18 mg). The enantiomeric excess was determined to be 99% ee by GC analysis using
a chiral stationary phase capillary column (Cyclodex CB).
Spectral and analytical data for compounds 6 are shown below, where the enantiomeric excesses were determined by GC (Cyclodex
CB), unless otherwise noted: 1-Acetoxy-4-phenoxycyclopentene (6a): [α]D
23 +63.8 (c = 1.0, CHCl3). 1H NMR (CDCl3): δ = 7.29 (t, J = 7.8 Hz, 2 H), 6.96 (t, J = 7.3 Hz, 1 H), 6.92 (d, J = 7.8 Hz, 2 H), 6.24 (d, J = 5.8 Hz, 1 H), 6.12 (d, J = 5.3 Hz, 1 H), 5.61 (br, 1 H), 5.17 (br, 1 H), 2.97 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.89 (dt, J = 4.0, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.77, 157.77, 135.05, 134.06, 129.53, 115.34, 79.55, 76.74, 37.94, 21.08.
IR (ATR): 1733, 1493, 1366, 1228, 1087, 889, 754, 692, 628 cm-1. MS (EI): m/z (%rel intensity) = 218 (0.7) [M+], 43 (base peak). Anal. Calcd for C13H14O3: C, 71.54; H, 6.47. Found: C, 71.49; H, 6.53. CAS registry number: 210701-09-0.
1-Acetoxy-4-(2-benzyloxyphenoxy)-2-cyclopentene (6b): [α]D
28 -20.5 (c = 1.0, CHCl3); 97% ee. 1H NMR (CDCl3): δ = 7.43-7.27 (m, 4 H), 6.89-6.98 (m, 5 H), 6.26 (br d, J = 4.8 Hz, 1 H), 6.09 (br d, J = 4.8 Hz, 1 H), 5.57 (br, 1 H), 5.17 (br, 1 H), 5.12 (s, 2 H), 2.93 (dt, J = 7.3, 14.6 Hz, 1 H), 2.04 (s, 3 H), 1.98 (dt, J = 4.3, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.88, 149.49, 148.28, 137.32, 134.67, 133.73, 128.45, 127.78, 127.29, 122.21,
121.70, 117.09, 115.60, 81.72, 76.79, 71.31, 38.08, 21.13. IR (ATR): 1732, 1499, 1452,
1366, 1236, 1212, 1083, 1012, 896, 742, 697, 627 cm-1. MS (EI): m/z (%rel intensity) = 324 (1) [M+], 91 (base peak). Anal Calcd for C20H20O4: C, 74.06; H, 6.21. Found: C, 73.94; H, 6.28.
1-Acetoxy-4-(2-chlorophenoxy)-2-cyclopentene (6c): [α]D
26 -58.0 (c = 1.0, CHCl3). 1H NMR (CDCl3): δ = 7.37 (dd, J = 1.8, 7.9 Hz, 1 H), 7.20 (dt, J = 1.8, 7.9 Hz, 1 H), 6.95 (d, J = 7.9 Hz, 1 H), 6.92 (t, J = 7.9 Hz, 1 H), 6.26 (d, J = 5.5 Hz, 1 H), 6.14 (J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.17 (br, 1 H), 2.99 (dt, J = 7.3, 14.6 Hz, 1 H), 2.06 (s, 3 H), 1.96 (dt, J = 4.3, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.84, 153.65, 134.65, 134.46, 130.57, 127.66, 123.71, 121.94, 115.26, 81.33,
76.61, 38.02, 21.11. IR (ATR): 1237, 1090, 902, 730, 649, 630 cm-1. MS (EI): m/z (%rel intensity): = 252 (0.02) [M+], 43 (base peak).
1-Acetoxy-4-(2-bromophenoxy)-2-cyclopentene (6d): [α]D
25 -100.8 (c = 1.1, CHCl3); 95% ee. 1H NMR (CDCl3): δ = 7.55 (dd, J = 1.2, 7.9 Hz, 1 H), 7.25 (td, J = 1.2, 7.3 Hz, 1 H), 6.94 (d, J = 1.2 Hz, 1 H), 6.85 (td, J = 1.2, 7.9 Hz, 1 H), 6.26 (d, J = 5.5 Hz, 1 H), 6.14 (d, J = 5.5 Hz, 1 H), 5.60 (br t, J = 5.5 Hz, 1 H), 5.17 (br t, J = 5.5 Hz, 1 H), 2.07 (s, 3 H), 2.00 (dt, J = 7.3, 14.6 Hz, 1 H), 1.96 (dt, J = 4.2, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.79, 154.52, 134.60, 134.39, 133.61, 128.37, 122.34, 114.99, 113.00, 81.34,
76.55, 38.00, 21.07. IR (ATR): 1733, 1584, 1573, 1474, 1442, 1366, 1085, 1029, 895,
748, 627 cm-1. MS (EI): m/z (%rel intensity) = 296 (0.02) [M+], 43 (base peak). Anal. Calcd for C13H13BrO3: C, 52.55; H, 4.41. Found: C, 52.37; H, 4.37.
1-Acetoxy-4-(2,6-dimethylphenoxy)-2-cyclopentene (6e): [α]D
27 -41.4 (c = 1.1, CHCl3). 1H NMR (CDCl3): δ = 7.02 (d, J = 7.3 Hz, 2 H), 6.92 (t, J = 7.3 Hz, 1 H), 6.16 (d, J = 5.4 Hz, 1 H), 6.05 (d, J = 5.4 Hz, 1 H), 5.52 (br t, J = 4.4 Hz, 1 H), 4.81 (br t, J = 6.3 Hz, 1 H), 2.88 (dt, J = 7.3, 14.6 Hz, 1 H), 2.30 (s, 6 H), 2.09 (s, 3 H), 2.06 (dt, J = 4.4, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 171.09, 155.79, 136.60, 133.37, 131.06, 129.16, 123.95, 84.66, 76.73, 38.51,
21.39, 17.46. IR (ATR): 1730, 1365, 1237, 1198, 1091, 903, 730, 649, 630 cm-1. MS (EI): m/z (%rel intensity) = 246 (0.09) [M+], 43 (base peak). HRMS (EI): m/z [M+] calcd for C15H18O3: 246.1256; found: 246.1251. The enantiomeric excess was determined by HPLC analysis
using a chiral stationary phase column [Chiralcel OD-H, eluent: n-hexane-2-propanol, 50:1; flow rate: 0.5 mL/min; t
R (major isomer) = 14.73 min and t
R (minor isomer) = 13.98 min] to be 90% ee.
1-Acetoxy-4-(3-methoxyphenoxy)-2-cyclopentene (6f): [α]D
26 +57.5 (c = 1.1, CHCl3); 96% ee. 1H NMR (CDCl3): δ = 7.18 (t, J = 8.5 Hz, 1 H), 6.52 [td, J = 2.4, 8.5 Hz (overlapped), 2 H], 6.48 (t, J = 2.4 Hz, 1 H), 6.24 (d, J = 5.5 Hz, 1 H), 6.13 (d, J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.16 (br, 1 H), 3.78 (s, 3 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.88 (dt, J = 3.9, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.77, 160.87, 158.99, 134.98, 134.12, 129.95, 107.35, 106.54, 101.88, 79.62,
55.24, 37.90, 21.04. IR (ATR): 1733, 1602, 1491, 1366, 1235, 1199, 1150, 1087, 1015,
891, 837, 765, 687, 629 cm-1. MS (EI): m/z (%rel intensity) = 248 (1) [M+], 43 (base peak). Anal. Calcd for C14H16O4: C, 67.73; H, 6.50. Found: C, 67.51; H, 6.45.
1-Acetoxy-4-(4-tert-buthylphenoxy)-2-cyclopentene (6g): [α]D
27 +148.7 (c = 1.4, CHCl3); 94% ee. 1H NMR (CDCl3): δ = 7.30 (d, J = 8.5 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.24 (d, J = 5.5 Hz, 1 H), 6.11 (d, J = 5.5 Hz, 1 H), 5.60 (s, 1 H), 5.14 (s, 1 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.89 (dt, J = 3.9, 14.6 Hz, 1 H), 1.37 (s, 9 H). 13C NMR (CDCl3): δ = 170.79, 155.51, 143.66, 135.25, 133.90, 126.30, 114.78, 79.61, 76.79, 37.98,
34.05, 31.48, 21.08. IR (ATR): 1736, 1511, 1365, 1232, 1185, 1087, 1013, 898, 829,
732, 630 cm-1. MS (EI): m/z (%rel intensity) = 274 (0.2) [M+], 43 (base peak). Anal. Calcd for C17H22O3: C, 74.42; H, 8.08. Found: C, 74.56; H, 8.22.
1-Acetoxy-4-phenoxy-2-cyclohexene (7): 1H NMR (CDCl3): δ = 7.26-7.31 (m, 2 H), 6.92-6.97 (m, 3 H), 6.08 (ddd, J = 1.2, 3.7, 10.0 Hz, 1 H), 6.07 (ddd, J = 1.2, 3.0, 10.0 Hz, 1 H), 5.25 (br s, 1 H), 4.76 (br s, 1 H), 2.07 (s, 3 H), 1.87-2.02
(m, 4 H). 13C NMR (CDCl3): δ = 170.72, 157.52, 131.10, 129.59, 121.06, 115.84, 70.27, 67.38, 24.92, 24.75,
21.27. IR (ATR): 1730, 1597, 1492, 1371, 1226, 1079, 1035, 958, 903, 754, 692 cm-1. MS (EI): m/z = 232 [M+]. The enantiomeric excess was determined by HPLC analysis using a chiral stationary
phase column [Chiralcel OD-H, eluent: n-hexane-2-propanol, 50:1; flow rate: 0.5 mL/min; t
R (major isomer) = 21.33 min and t
R (minor isomer) = 18.48 min] to be 95% ee.