References and Notes
<A NAME="RS04308ST-1">1</A> See the preceding paper:
Buller MJ.
Gilley CB.
Nguyen B.
Olshansky L.
Fraga B.
Kobayashi Y.
Synlett
2008,
2244
For γ-lactam synthesis,
see:
<A NAME="RS04308ST-2A">2a</A>
Short KM.
Mjalli AMM.
Tetrahedron
Lett.
1997,
38:
359
<A NAME="RS04308ST-2B">2b</A>
Harriman GCB.
Tetrahedron Lett.
1997,
38:
5591
<A NAME="RS04308ST-2C">2c</A>
Hanusch-Kompa C.
Ugi I.
Tetrahedron Lett.
1998,
39:
2725
<A NAME="RS04308ST-2D">2d</A>
Tye H.
Whittaker M.
Org. Biomol. Chem.
2004,
2:
813
<A NAME="RS04308ST-2E">2e</A> For γ-lactone
synthesis, see:
Passerini M.
Gazz.
Chim. Ital.
1923,
53:
331
For recent reviews on multicomponent condensation reactions,
see:
<A NAME="RS04308ST-2F">2f</A>
Ramon DJ.
Yus M.
Angew. Chem.
Int. Ed.
2005,
44:
1602
<A NAME="RS04308ST-2G">2g</A>
Dömling A.
Chem. Rev.
2006,
106:
17
<A NAME="RS04308ST-3">3</A>
Database search on the reported synthesis
of levulinic acid derivatives by MDL CrossFire Commander was conducted on
April 25, 2008.
<A NAME="RS04308ST-4">4</A> For a recent example in the literature,
see:
Mahajan VA.
Borate HB.
Wakharkar RD.
Tetrahedron
2006,
62:
1258
<A NAME="RS04308ST-5A">5a</A> For
compound 1, see:
Lueoend RM.
Walker J.
Neier RW.
J. Org. Chem.
1992,
57:
5005
<A NAME="RS04308ST-5B">5b</A> For an ester of compound 4, see:
Kende AS.
Kawamura K.
Orwat MJ.
Tetrahedron
Lett.
1989,
30:
5821
<A NAME="RS04308ST-6">6</A>
Evans DA.
Tedrow JS.
Shaw JT.
Downey CW.
J. Am. Chem. Soc.
2002,
124:
392
<A NAME="RS04308ST-7">7</A>
Abiko A.
Liu J.-F.
Masamune S.
J.
Org. Chem.
1996,
61:
2590
<A NAME="RS04308ST-8">8</A>
The anti isomer
was also isolated in 18% yield.
<A NAME="RS04308ST-9">9</A> Enantioselective synthesis of 4 would be achieved by Mulzer’s
procedure:
Kögl M.
Brecker L.
Warrass R.
Mulzer J.
Angew. Chem. Int. Ed.
2007,
46:
9320
<A NAME="RS04308ST-10A">10a</A>
Gilley CB.
Buller MJ.
Kobayashi Y.
Org. Lett.
2007,
9:
3631
<A NAME="RS04308ST-10B">10b</A>
Isaacson J.
Loo M.
Kobayashi Y.
Org. Lett.
2008,
10:
1461
<A NAME="RS04308ST-10C">10c</A>
Isaacson J.
Gilley CB.
Kobayshi Y.
J.
Org. Chem.
2007,
72:
3913
<A NAME="RS04308ST-10D">10d</A>
Vamos M.
Ozboya K.
Kobayashi Y.
Synlett
2007,
1595
<A NAME="RS04308ST-10E">10e</A>
Kreye O.
Westermann B.
Wessjohann LA.
Synlett
2007,
3188
<A NAME="RS04308ST-11">11</A> The stereochemistry of compound 23 was not determined. For a recent application
of the Amadori rearrangement in natural product synthesis, see:
Guzi TJ.
Macdonald TL.
Tetrahedron Lett.
1996,
37:
2939
<A NAME="RS04308ST-12">12</A>
¹H NMR data of
the selected compounds are shown below. Compounds 1 and 19 are reported as compounds 10 and 11a, respectively,
in the preceding paper.¹ Compound 2: ¹H NMR (400 MHz,
CDCl3): δ = 5.01 (br s, 1 H), 4.10
(br s, 1 H), 3.11 (d, J = 4.8
Hz, 1 H), 2.20 (br s, 4 H), 1.34 (d, J = 6.8
Hz, 3 H). Compound 3: ¹H
NMR (400 MHz, CDCl3): δ = 7.02 (br s,
1 H), 4.53 (br s, 1 H), 2.95 (br s, 1 H), 2.13 (br s, 4 H), 1.05 (br
s, 3 H). Compound 4: ¹H
NMR (400 MHz, CDCl3): δ = 4.76 (br
s, 1 H), 4.05 (s, 1 H), 1.91 (s, 3 H), 1.27 (s, 3 H), 1.22 (s, 3
H). Compound 5: ¹H
NMR (300 MHz, CDCl3): δ = 5.97 (br
s, 1 H), 2.99 (d, J = 12.3 Hz,
1 H), 2.66 (d, J = 12.3 Hz, 1
H), 2.25 (s, 3 H), 1.32 (s, 3 H). Compound 8: ¹H
NMR (400 MHz, CDCl3): δ = 7.24-7.35
(m, 10 H), 6.56 (s, 1 H), 4.69-4.76 (m, 1 H), 4.16-4.37
(m, 4 H), 3.34 (dd, J = 3.2,
13.6 Hz, 1 H), 2.78 (dd, J = 9.6,
13.6 Hz, 1 H), 1.96 (s, 3 H), 1.18 (d, J = 6.8
Hz, 3 H). Compound 9: ¹H
NMR (400 MHz, CDCl3): δ = 7.21-7.36
(m, 10 H), 6.52 (s, 1 H), 5.21 (d, J = 12.4
Hz, 1 H), 5.17 (d, J = 12.4
Hz, 1 H), 4.30 (d, J = 8.4 Hz,
1 H), 2.84 (quin, J = 7.6 Hz,
1 H), 1.86 (s, 3 H), 1.16 (d, J = 7.2 Hz,
3 H). Compound 16: ¹H
NMR (300 MHz, CDCl3): δ = 7.28-7.36
(m, 5 H), 5.13 (s, 2 H), 3.67 (s, 1 H), 3.32 (s, 3 H), 3.24 (s,
3 H), 2.73 (d, J = 14.1 Hz,
1 H), 2.40 (d, J = 14.1 Hz, 1
H), 1.30 (br s, 6 H). Compound 17: ¹H
NMR (300 MHz, CDCl3): δ = 7.32-7.38
(m, 5 H), 5.14 (d, J = 12.3
Hz, 1 H), 5.09 (d, J = 12.3
Hz, 1 H), 3.05 (d, J = 16.5
Hz, 1 H), 2.69 (d, J = 16.5
Hz, 1 H), 2.29 (s, 3 H), 1.32 (s, 3 H). Compound 20 (major
diastereomer, anti): ¹H
NMR (400 MHz, CDCl3): δ = 8.97 (s,
1 H), 7.65 (d, J = 8.0 Hz, 1
H), 7.13-7.26 (m, 5 H), 6.79-6.83 (m, 2 H), 5.15
(d, J = 15.6 Hz, 1 H), 4.46-4.49 (m,
2 H), 4.03-4.12 (m, 2 H), 3.77 (s, 3 H), 3.42 (s, 3 H),
3.37 (s, 3 H), 2.77-2.85 (m, 3 H), 1.42 (s, 3 H), 1.28-1.36
(m, 3 H). Compound 21 (major diastereomer, anti): ¹H NMR (300 MHz,
CDCl3): δ = 9.14 (s, 1 H), 7.69-7.73
(m, 2 H), 7.11-7.22 (m, 5 H), 6.77-6.84 (m, 2
H), 5.36 (d, J = 15.3 Hz, 1
H), 4.40-4.45 (m, 1 H), 4.00 (d, J = 15.3
Hz, 1 H), 3.77 (s, 3 H), 3.41 (s, 3 H), 3.36 (s, 3 H), 2.81-3.00
(m, 3 H), 1.46 (s, 3 H), 1.28 (s, 3 H), 1.24 (s, 3 H). Compound 22 (major diastereomer, anti): ¹H
NMR (400 MHz, CDCl3): δ = 8.94 (s, 1
H), 7.49 (d, J = 8.0 Hz, 1 H),
7.09-7.28 (m, 5 H), 6.79-6.88 (m, 2 H), 4.76 (d, J = 15.2 Hz, 1 H), 4.41-4.45
(m, 1 H), 4.22 (d, J = 15.2
Hz, 1 H), 4.08-4.13 (m, 1 H), 3.74 (s, 3 H), 3.41 (s, 3
H), 3.39 (s, 3 H), 2.74 (m, 3 H), 2.92 (m, 1 H), 1.47 (s, 3 H),
1.41 (s, 3 H). Compound 23: ¹H
NMR (400 MHz, CDCl3): δ = 7.21 (d, J = 8.3 Hz, 2 H), 6.83 (d, J = 8.3 Hz, 2 H), 3.74-3.77
(m, 5 H), 3.60 (q, J = 8.8 Hz,
1 H), 3.11 (br s, 1 H), 2.53 (dd, J = 7.2,
17.6 Hz, 1 H), 2.37 (dd, J = 7.6,
17.6 Hz, 1 H), 1.21 (d, J = 6.8
Hz, 3 H), 1.04 (d, J = 7.2 Hz,
3 H).