Subscribe to RSS
DOI: 10.1055/s-2008-1077978
Synthesis of a Biotin-Labeled Quorum-Sensing Molecule: Towards a General Method for Target Identification
Publication History
Publication Date:
15 July 2008 (online)

Abstract
The synthesis of bacterial quorum-sensing regulator N-(3-oxohexanoyl)-l-homoserine lactone (OHHL) and biotin-tagged OHHL is reported. The latter will be applied to developing a general method to address the ‘target identification problem’ in chemical genetics.
Key words
drugs - high-throughput screening - proteins - OHHL - quorum sensing
- For reviews on chemical genetics, see:
- 1a
MacBeath G. Genome Biol. 2001, 2: 2005.1Reference Ris Wihthout Link - 1b
Spring DR. Chem. Soc. Rev. 2005, 34: 472Reference Ris Wihthout Link - 1c
Walsh DP.Chang Y.-T. Chem. Rev. 2006, 106: 2476Reference Ris Wihthout Link - For reviews on DOS, see:
- 3a
Spandl RJ.Thomas GL.Diaz-Gavilan M.O’Connell KMG.Spring DR. Chem. Rec. 2008, 129Reference Ris Wihthout Link - 3b
Nielsen TE.Schreiber SL. Angew. Chem. Int. Ed. 2008, 47: 48Reference Ris Wihthout Link - 3c
Spandl RJ.Spring DR.Bender A. Org. Biomol. Chem. 2008, 6: 1149Reference Ris Wihthout Link - 3d
Tan DS. Nat. Chem. Biol. 2005, 1: 74Reference Ris Wihthout Link - 3e
Thomas GL.Wyatt EE.Spring DR. Curr. Opin. Drug Discovery Dev. 2006, 9: 700Reference Ris Wihthout Link - For reviews and approaches to solving the target identification problem, see:
- 4a
Ahn YH.Chang YT. Acc. Chem. Res. 2007, 40: 1025Reference Ris Wihthout Link - 4b
Wong CC.Cheng KW.He QY.Chen F. Proteomics: Clin. Appl. 2008, 2: 338Reference Ris Wihthout Link - 4c
Zheng XFS.Chan TF.Zhou HH. Chem. Biol. 2004, 11: 609Reference Ris Wihthout Link - 5
Burdine L.Kodadek T. Chem. Biol. 2004, 11: 593 - For reviews of quorum sensing involving N-acylated homoserine lactones, see:
- 6a
Hodgkinson JT.Welch M.Spring DR. ACS Chem. Biol. 2007, 2: 715Reference Ris Wihthout Link - 6b
Geske GD.Oneill JC.Miller DM.Wezeman RJ.Mattmann ME.Lin Q.Blackwell HE. ChemBioChem 2008, 9: 389Reference Ris Wihthout Link - For selected recent examples, see:
- 7a
Thomas GL.Bohner CM.Williams HE.Walsh CM.Ladlow M.Welch M.Bryant CE.Spring DR. Mol. BioSyst. 2006, 2: 132Reference Ris Wihthout Link - 7b
Welch M.Mikkelsen H.Swatton JE.Smith D.Thomas GL.Glansdorp FG.Spring DR. Mol. BioSyst. 2005, 1: 196Reference Ris Wihthout Link - 7c
Welch M.Dutton JM.Glansdorp FG.Thomas GL.Smith DS.Coulthurst SJ.Barnard AML.Salmond GPC.Spring DR. Bioorg. Med. Chem. Lett. 2005, 15: 4235Reference Ris Wihthout Link - 7d
Glansdorp FG.Thomas GL.Lee JJK.Dutton JM.Salmond GPC.Welch M.Spring DR. Org. Biomol. Chem. 2004, 2: 3329Reference Ris Wihthout Link - 8 A solution-phase route to OHHL(2):
Dekhane M.Douglas KT.Gilbert P. Tetrahedron Lett. 1996, 37: 1883 - The synthesis of native N-acylated homoserine lactones [including OHHL(2)] and non-natural analogues on solid support:
- 9a
Geske GD.O’Neill JC.Blackwell HE. ACS Chem. Biol. 2007, 2: 426Reference Ris Wihthout Link - 9b
Geske GD.O’Neill JC.Miller DM.Mattmann ME.Blackwell HE.
J. Am. Chem. Soc. 2007, 129: 13613Reference Ris Wihthout Link - 9c
Geske GD.Wezeman RJ.Siegel AP.Blackwell HE. J. Am. Chem. Soc. 2005, 127: 12762Reference Ris Wihthout Link - 10 Analogues of the related signaling
molecule N-3-(oxododecanoyl)-l-homoserine lactone (OdDHL), used in Pseudomonas aeruginosa, have been synthesized
by coupling using the acid, Meldrum’s acid, and the amine
in one pot:
Chhabra SR.Harty C.Hooi DSW.Daykin M.Williams P.Telford G.Pritchard DI.Bycroft BW. J. Med. Chem. 2003, 46: 97 ; in our hands this method proved less fruitful than the stepwise method employed therein - 12
Blackwell HE,Geske GD, andWezeman RJ. inventors; WO 2006/084056 A2.Reference Ris Wihthout Link
References and Notes
The complementary approach, reverse chemical genetics, involves modulating a known protein and analyzing the resulting phenotype.¹b
11N-(3-Oxohexanoyl)-l-homoserine lactone(2): R f = 0.23 (SiO2; EtOAc-PE, 8:2). IR (neat): νmax = 3301 (w, br), 2965 (w), 2878 (w), 1774 (s), 1716 (m), 1649 (s), 1535 (m), 1379 (m), 1221 (m), 1169 (s), 1021 (m) cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 7.73 (1 H, br s, CONH), 4.63-4.51 [1 H, br m, C(2)H], 4.43 [1 H, br t, J = 9.1 Hz, C(4)HaHb], 4.27-4.18 [1 H, br m, C(4)HaHb], 3.42 (2 H, s, COCH2CO), 2.68-2.58 [1 H, br m, C(3)HaHb], 2.47 (2 H, t, J = 7.3 Hz, CH3CH2CH2), 2.30-2.16 [1 H, br m, C(3)HaHb], 1.54 (2 H, sext, J = 7.3 Hz, CH3CH2CH2), 0.86 (2 H, t, J = 7.5, CH3CH2CH2). ¹³C NMR (100 MHz, CDCl3): δ = 206.1 (C), 175.2 (C), 166.9 (C), 65.9 (CH2), 48.9 (CH), 48.7 (CH2), 45.4 (CH2), 29.2 (CH2), 16.8 (CH2), 13.4 (CH3). HRMS: m/z calcd for C10H15NO4Na+: 236.0899; found [ESI - Na+]: 236.0892; Δppm = -1.5; mp 80-81 ˚C (EtOAc-PE). [α]D ²5 +7.36 (c 0.95, CHCl3).
13Compound 2: [α]D ²5 +7.36 (c 0.95, CHCl3). Sigma OHHL [α]D ²5 +8.5 (c 0.12, CHCl3). These specific rotation values are slightly lower than those reported by Blackwell and co-workers,¹²a that is, [α]D ²5 +12.2 (c 2.7, CHCl3). Although some racemization may have occurred during the synthesis reported here, this did not affect binding of CarR. In our hands coupling with HOBt was less successful.
14Polymer-bound DMAP was required in
the final EDC-mediated coupling to aid purification. The reaction
products and DMAP had very similar R
f
values.
Synthesis
of 18
A round-bottom flask, equipped with a magnetic
stirrer, containing the ester 17 (529 mg,
1.02 mmol), LiOH˙H2O (98 mg, 2.33 mmol) and
66% aq MeOH (25 mL) was stirred at r.t. for 16 h. The solvent
was removed in vacuo to give the lithium salt of the corresponding
acid (structure not shown) as a white solid (550 mg). The salt was
used in subsequent reactions without further purification. A round-bottom
flask, equipped with a magnetic stirrer, containing the lithium
salt (0.55 g, 1.09 mmol), EDC (0.27 g, 1.42 mmol), polymer-bound
DMAP (5 mmol/g, 1.1 g, 5.46 mmol), and DMF (40 mL) was
stirred at r.t. for 15 min before being charged with l-homoserine
lactone hydrobromide (1.02 g, 5.6 mmol) and stirred at r.t. for
16 h. The crude reaction mixture was filtered and solvent removed
in vacuo. The crude product was purified by column chromatography
to give 18 as a colorless oil (0.43 g,
68% over 2 steps).
R
f
= 0.36 (SiO2;
CH2Cl2-MeOH, 85:15). IR (neat): νmax = 3391
(s, br), 2932 (w, br), 1766 (m), 1645 (s) br, 1549 (s), 1474 (m),
1355 (m), 1063 (s) cm-¹. ¹H
NMR (400 MHz, CD3OD): δ = 4.69-4.52 [2
H, m, NHCHCH2S and C(2)H], 4.48 [1
H, t, J = 9.2 Hz, C(4)HaHb],
4.41-4.29 [2 H, m, NHCHCH2S and C(4)HaHb],
4.13-3.94 [4 H, m, C(OCH2CH2O)CH2],
3.67-3.54 (6 H, m, OCH2CH2O and NHCH2CH2O),
3.54 (2 H, t, J = 6.1 Hz, OCH2CH2CH2C), 3.35-3.47
(2 H, br m, NHCH2CH2O), 3.30-3.22
(1 H, m, SCH), 2.97 (1 H, dd, J = 12.7,
5.1 Hz, SCHaHb), 2.75 (1 H, d, J = 12.7 Hz, SCHaHb),
2.66-2.49 [3 H, m, C(OCH2CH2O)CH2CO
and C(3)HaHb)], 2.43-2.30 [1
H, m, C(3)HaHb], 2.26 (2 H, t, J = 7.1 Hz, CH2CH2CH2CH2CONH],
1.88-1.55 (8 H, CH2CH2CH2CH2CONH
and OCH2CH2CH2C), 1.53-1.41
(2 H, m, CH2CH2CH2CH2CONH). ¹³C
NMR (100 MHz, CD3OD): δ = 174.5 (C),
173.3 (C), 168.9 (C), 163.1 (C), 107.7 (C), 69.3 (CH2),
68.4 (CH2), 68.2 (CH2), 67.7 (CH2), 64.5
(CH2), 63.4 (CH2), 60.5 (CH), 58.8 (CH), 54.1
(CH), 47.0 (CH), 42.2 (CH2), 38.3 (CH2), 37.5
(CH2), 33.9 (CH2), 32.5 (CH2),
26.9 (CH2), 26.7 (CH2), 26.5 (CH2),
24.0 (CH2), 22.0 (CH2). LCMS (MeCN): 587 [MH].
HRMS: m/z calcd for C26H43N4O9S1
+:
587.2746; found [ESI - H+]:
587.2746; Δppm = +0.1.
Synthesis of 1
A round-bottom
flask, equipped with a magnetic stirrer and open to air, containing
the acetal 18 (140 mg, 0.23 mmol), CH2Cl2 (2.5
ml), and TFA (0.25 mL, 33.6 mmol) at r.t. was stirred for 2.5 h
and the solvent was removed in vacuo. The crude product was purified
by column chromatography to give the title compound 1 (66
mg, 52%) as a colorless oil.
R
f
= 0.21 (SiO2;
CH2Cl2-MeOH, 9:1). IR (neat): νmax = 3292 (w,
br), 2926 (w, br), 1774 (m), 1671 (s, br), 1541 (m), 1469 (m), 1332
(m), 1200(s), 1175 (s), 1127 (s), 1020 (m) cm-¹. ¹H
NMR (400 MHz, CD3OD): δ = 4.58 [1
H, dd, J = 10.8 9.3, C(2)H],
4.53-4.40 [2 H, m, NHCHCH2S and C(4)HaHb], 4.38-4.23 [2
H, m, NHCHCH2S and C(4)HaHb],
3.62-3.50 (6 H, m, OCH2CH2O and NHCH2CH2O),
3.46 (2 H, t, J = 6.3 Hz, OCH2CH2CH2),
3.39-3.32 [4 H, m, NHCH2CH2O
and C(O)CH2C(O)], 3.24-3.16 (1 H, m,
SCH), 2.93 (1 H, dd, J = 5.1,
12.7 Hz, SCHaHb), 2.74-2.63 (3 H,
m, SCHaHb and OCH2CH2CH2),
2.62-2.52 [1 H, m, C(3)HaHb],
2.37-2.17 [3 H, m, C(3)HaHb,
CH2CH2CONH], 1.84 [2 H,
quin, J = 6.9 Hz, OCH2CH2CH2C(O)],
1.77-1.53 (4 H, m, CH2CH2CH2CH2),
1.44 (2 H, quin, J = 3.9 Hz, CH2CH2CH2CH2). ¹³C
NMR (100 MHz, CD3OD): δ = 197.5 (C),
175.7 (C), 174.8 (C), 167.9 (C), 164.7 (C), 69.8 (CH2), 69.8
(CH2), 69.7 (CH2), 69.2 (CH2),
65.9 (CH2), 61.9 (CH), 60.2 (CH), 55.6 (CH), 48.7 (CH),
48.5 (CH2), 39.6 (CH2), 39.0 (CH2),
38.9 (CH2), 35.4 (CH2), 28.3 (CH2),
28.2 (CH2), 28.1 (CH2), 25.4 (CH2),
23.3 (CH2). HRMS: m/z calcd
for C24H39N4O8S+:
543.2489; found [ESI - H+]:
543.2497; Δppm = +0.7. [α]D
²5 +11.7
(c 0.54, CHCl3).