References and Notes
Reviews:
<A NAME="RG16208ST-1A">1a</A>
Zimmer R.
Synthesis
1993,
165
<A NAME="RG16208ST-1B">1b</A>
Zimmer R.
Khan FA.
J. Prakt. Chem.
1996,
338:
92
<A NAME="RG16208ST-1C">1c</A>
Zimmer R.
Dinesh CU.
Nandanan E.
Khan FA.
Chem. Rev.
2000,
100:
3067
<A NAME="RG16208ST-1D">1d</A>
Tius MA.
Acc. Chem. Res.
2003,
36:
281
<A NAME="RG16208ST-1E">1e</A>
Zimmer R.
Reissig H.-U.
Donor-Substituted Allenes, In Modern Allene Chemistry
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
p.425
<A NAME="RG16208ST-1F">1f</A>
Tius MA.
Cyclizations of Allenes, In Modern Allene Chemistry
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
p.817
<A NAME="RG16208ST-1G">1g</A>
Tius MA.
Eur. J. Org. Chem.
2005,
2193
<A NAME="RG16208ST-1H">1h</A>
Reissig H.-U.
Zimmer R. In
Science
of Synthesis
Vol. 44:
Krause N.
Thieme;
Stuttgart:
2007.
p.301
<A NAME="RG16208ST-1I">1i</A>
Tius MA.
1-Methoxyallenyl Lithium, In Encyclopedia of Reagents for Organic Synthesis
Vol.
5:
Paquette LA.
Wiley;
Chichester:
1995.
p.3316
<A NAME="RG16208ST-1J">1j</A>
Zimmer R.
Reissig
H.-U.
1-Methoxyallenyl
Lithium, In Encyclopedia of Reagents
for Organic Synthesis
1st update:
Paquette LA.
Wiley;
Chichester:
2005.
<A NAME="RG16208ST-2A">2a</A>
Zimmer R.
Reissig H.-U.
Angew.
Chem. Int. Ed. Engl.
1988,
27:
1518 ; Angew. Chem. 1988, 100, 1576
<A NAME="RG16208ST-2B">2b</A>
Zimmer R.
Reissig H.-U.
Liebigs Ann. Chem.
1991,
553
<A NAME="RG16208ST-2C">2c</A>
Zimmer R.
Angermann J.
Hain U.
Hiller F.
Reissig H.-U.
Synthesis
1997,
1467
<A NAME="RG16208ST-2D">2d</A>
Zimmer R.
Orschel B.
Scherer S.
Reissig H.-U.
Synthesis
2002,
1553
<A NAME="RG16208ST-2E">2e</A>
Zimmer R.
Collas M.
Czerwonka R.
Hain U.
Reissig H.-U.
Synthesis
2008,
237
<A NAME="RG16208ST-3A">3a</A>
Schade W.
Reissig H.-U.
Synlett
1999,
632
<A NAME="RG16208ST-3B">3b</A>
Pulz R.
Cicchi S.
Brandi A.
Reissig H.-U.
Eur. J. Org. Chem.
2003,
1153
<A NAME="RG16208ST-3C">3c</A>
Helms M.
Schade W.
Pulz R.
Watanabe T.
Al-Harrasi A.
Fisera L.
Hlobilova I.
Zahn G.
Reissig H.-U.
Eur.
J. Org. Chem.
2005,
1003
<A NAME="RG16208ST-4A">4a</A>
Hoff S.
Brandsma L.
Arens JF.
Recl. Trav. Chim. Pays-Bas
1969,
88:
609
<A NAME="RG16208ST-4B">4b</A>
Gange D.
Magnus P.
J. Am. Chem. Soc.
1978,
100:
7746
<A NAME="RG16208ST-4C">4c</A>
Gange D.
Magnus P.
Bass L.
Arnold EV.
Clardy J.
J.
Am. Chem. Soc.
1980,
102:
2134
<A NAME="RG16208ST-4D">4d</A>
Magnus P.
Albaugh-Robertson P.
J. Chem. Soc., Chem.
Commun.
1984,
804
<A NAME="RG16208ST-4E">4e</A>
Hormuth S.
Reissig H.-U.
J. Org. Chem.
1994,
59:
67
<A NAME="RG16208ST-4F">4f</A>
Hormuth S.
Schade W.
Reissig H.-U.
Liebigs
Ann.
1996,
2001
<A NAME="RG16208ST-4G">4g</A>
Flögel O.
Reissig H.-U.
Eur.
J. Org. Chem.
2004,
2797
<A NAME="RG16208ST-4H">4h</A>
Hölemann A.
Reissig H.-U.
Synthesis
2004,
1963
<A NAME="RG16208ST-4I">4i</A>
Brasholz M.
Reissig H.-U.
Synlett
2007,
1294
<A NAME="RG16208ST-4J">4j</A>
Brasholz M.
Reissig H.-U.
Angew. Chem. Int. Ed.
2007,
46:
1634 ; Angew. Chem. 2007, 119, 1659
<A NAME="RG16208ST-5A">5a</A>
Breuil-Desvergnes V.
Compain P.
Vatèle J.-M.
Goré J.
Tetrahedron Lett.
1999,
40:
5009
<A NAME="RG16208ST-5B">5b</A>
Breuil-Desvergnes V.
Compain P.
Vatèle J.-M.
Goré J.
Tetrahedron
Lett.
1999,
40:
8789
<A NAME="RG16208ST-5C">5c</A>
Okala Amombo M.
Hausherr A.
Reissig H.-U.
Synlett
1999,
1871
<A NAME="RG16208ST-5D">5d</A>
Breuil-Desvergnes V.
Goré J.
Tetrahedron
2001,
57:
1939
<A NAME="RG16208ST-5E">5e</A>
Breuil-Desvergnes V.
Goré J.
Tetrahedron
2001,
57:
1951
<A NAME="RG16208ST-5F">5f</A>
Flögel O.
Okala Amombo MG.
Reissig H.-U.
Zahn G.
Brüdgam I.
Hartl H.
Chem.
Eur. J.
2003,
9:
1405
<A NAME="RG16208ST-5G">5g</A>
Flögel O.
Reissig H.-U.
Synlett
2004,
895
<A NAME="RG16208ST-5H">5h</A>
Chowdhury MA.
Reissig H.-U.
Synlett
2006,
2383
<A NAME="RG16208ST-5I">5i</A>
Kaden S.
Reissig H.-U.
Org. Lett.
2006,
8:
4763
<A NAME="RG16208ST-6">6</A>
Kaden S.
Brockmann M.
Reissig H.-U.
Helv.
Chim. Acta
2005,
88:
1826
<A NAME="RG16208ST-7A">7a</A>
Flögel O.
Dash J.
Brüdgam I.
Hartl H.
Reissig
H.-U.
Chem. Eur. J.
2004,
10:
4283
<A NAME="RG16208ST-7B">7b</A>
Dash J.
Lechel T.
Reissig H.-U.
Org.
Lett.
2007,
9:
5541
<A NAME="RG16208ST-7C">7c</A>
Lechel T.
Dash J.
Brüdgam I.
Reissig H.-U.
Eur. J. Org. Chem.
2008,
3647
<A NAME="RG16208ST-8A">8a</A>
Gwiazda M.
Reissig H.-U.
Synlett
2006,
1683
<A NAME="RG16208ST-8B">8b</A>
Gwiazda M.
Reissig H.-U.
Synthesis
2008,
990
<A NAME="RG16208ST-9">9</A>
Kaden S.
Reissig H.-U.
Brüdgam I.
Hartl H.
Synthesis
2006,
1351
<A NAME="RG16208ST-10">10</A>
Sörgel S.
Azap C.
Reissig H.-U.
Org.
Lett.
2006,
8:
4875
<A NAME="RG16208ST-11A">11a</A>
Reissig H.-U.
Hormuth S.
Schade W.
Okala Amombo M.
Watanabe T.
Pulz R.
Hausherr A.
Zimmer R.
J.
Heterocycl. Chem.
2000,
37:
597
<A NAME="RG16208ST-11B">11b</A>
Brasholz M.
Reissig H.-U.
Zimmer R.
Acc.
Chem. Res.
2008, in press
<A NAME="RG16208ST-12">12</A>
Watanabe, T.; Reissig, H.-U., unpublished
results.
<A NAME="RG16208ST-13A">13a</A>
Jeong I.-Y.
Nagao Y.
Synlett
1999,
579
<A NAME="RG16208ST-13B">13b</A>
Voigt B.
Brands M.
Goddard R.
Wartchow R.
Butenschön H.
Eur.
J. Org. Chem.
1998,
2719
Reviews:
<A NAME="RG16208ST-14A">14a</A>
Marchand AP.
Synlett
1991,
73
<A NAME="RG16208ST-14B">14b</A>
Marchand AP.
Aldrichimica Acta
1995,
28:
95
<A NAME="RG16208ST-15">15</A>
Marchand AP.
Chong H.-S.
Ganguly B.
Tetrahedron: Asymmetry
1999,
10:
4695
<A NAME="RG16208ST-16">16</A>
Govender T.
Hariprakasha HK.
Kruger HG.
Marchand AP.
Tetrahedron:
Asymmetry
2003,
14:
1553
<A NAME="RG16208ST-17A">17a</A>
Marchand AP.
Alihod˛ić S.
McKim AS.
Kumar KA.
Mlinarić-Majerski K.
Šumanovac T.
Bott SG.
Tetrahedron Lett.
1998,
39:
1861
<A NAME="RG16208ST-17B">17b</A>
Marchand AP.
Hazlewood A.
Huang Z.
Vadlakonda SK.
Rocha J.-DR.
Power TD.
Mlinarić-Majerski K.
Klaic L.
Kragol G.
Byran JC.
Struct. Chem.
2003,
14:
279
<A NAME="RG16208ST-17C">17c</A>
Marchand AP.
Gore VK.
Srinivas G.
Heterocycles
2003,
61:
541
<A NAME="RG16208ST-17D">17d</A>
Romański J.
Marchand AP.
Polish
J. Chem.
2004,
78:
223
<A NAME="RG16208ST-18">18</A>
Cookson RC.
Crundwell E.
Hill RR.
Hudec J.
J. Chem. Soc.
1964,
3062
<A NAME="RG16208ST-19">19</A>
Bisallenyl Adduct
4
Methoxyallene (4.20 g, 60.0 mmol) was dissolved
in dry THF (35 mL) and treated with n-BuLi
(16.0 mL, 40.0 mmol, 2.5 M in hexanes) at -40 ˚C
under argon atmosphere. After 5 min the solution of 2 was
cooled to -78 ˚C and diketone 1 (0.522 g, 3.00 mmol, dissolved in 5 mL
of THF) was added within 5 min. The reaction mixture was stirred
for 2 h at
-78 ˚C and quenched
with sat. aq NH4Cl solution (25 mL). Warmup to r.t. was
followed by extraction with Et2O (3 × 30 mL)
and drying (Na2SO4). Purification of the crude
product by recrystallization (hexane-Et2O) provided 4 (0.678 g, 74%) as a beige-colored
solid, mp 148-150 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 1.03,
1.54 (AB system, J
AB = 10.5 Hz,
2 H, CH2), 2.25-2.46, 2.61-2.73 (2
m, 4 H each, 8 CH), 3.43 (s, 6 H, OMe), 5.46 (s, 2 H, OH), 5.48
(s, 4 H, =CH2). ¹³C
NMR (62.9 MHz, CDCl3): δ = 196.6
(s, C=C=CH2), 137.5
(s, =C=COMe), 91.8
(t, =C=CH2),
79.1 (s, C-3, C-5), 56.6 (q, OMe), 47.8, 44.8, 40.7, 33.8 (4 d,
CH), 41.4 (t, CH2). IR (KBr): 3630-3150 (OH),
3020-2820 (=CH, CH), 1930 (C=C=C),
1650 (C=C) cm-¹. MS (EI, 80
eV): m/z (%) = 314 (6) [M]+,
281 (44), 161 (46), 147 (66), 115 (70), 103 (34), 69 (65), 55 (100),
43 (38). HRMS (80 eV): m/z calcd
for C19H22O4: 314.1518; found:
314.1543. Anal. Calcd for C19H22O4 (314.4):
C, 72.59; H, 7.05. Found: C, 71.81; H, 6.97.
<A NAME="RG16208ST-20">20</A>
Compound 5
To
a solution of 4 (0.205 g, 0.655 mmol) in
CH2Cl2 (13 mL) mesyl chloride (0.082 g, 0.723
mmol, dissolved in 2 mL of CH2Cl2) and Et3N
(0.658 g, 6.55 mmol) were added at 0 ˚C. The solution
was warmed up to r.t. and stirred for additional 2.5 h. Then, sat.
aq NH4Cl solution (5 mL) was added and the phases were
separated. The organic phase was successively washed with H2O
(3 × 5 mL) and brine (1 × 5
mL) and dried (Na2SO4). Purification of the
crude product by chromatography on alumina (hexane-EtOAc,
4:1) provided 5 (0.186 g, 96%)
as an orange resin. ¹H NMR (250 MHz, CDCl3): δ = 1.55,
1.92 (AB system, J
AB = 10.5
Hz, 2 H, CH2), 2.43, 2.65, 2.86, 2.93 (4 br s, 2 H each,
8 CH), 3.46 (s, 6 H, OMe), 5.51 (s, 4 H, =CH2). ¹³C
NMR (62.9 MHz, CDCl3): δ = 198.7
(s, C=C=CH2),
132.0 (s, =C=COMe), 91.1
(t, =C=CH2),
95.1 (s, C-3, C-5), 56.4 (q, OMe), 57.3, 47.4, 44.3, 41.0 (4 d,
CH), 43.3 (t, CH2). IR (neat): 3010-2860 (CH),
1930 (C=C=C) cm-¹.
MS (EI, 80 eV): m/z (%) = 296
(100) [M]+, 281 (29) [M - CH3]+,
265 (12) [M - OMe]+,
227 (15), 145 (18), 115 (15). HRMS (80 eV): m/z calcd
for C19H20O3: 296.1412; found:
296.1442.
<A NAME="RG16208ST-21">21</A>
Hoff S.
Brandsma L.
Arens JF.
Recl.
Trav. Chim. Pays-Bas
1968,
87:
1179
<A NAME="RG16208ST-22">22</A> Review on α,β-unsaturated
carbonyl compounds:
Bulman Page PC.
Klair SS.
Rosenthal S.
Chem.
Soc. Rev.
1990,
19:
147
<A NAME="RG16208ST-23">23</A> The diester 7 was
recently obtained by a one-pot reaction of 1 with
dimethoxycarbene in moist toluene in 19% yield, see:
Romański J.
Mlostoń G.
Heimgartner H.
Helv. Chim. Acta
2007,
90:
1279
<A NAME="RG16208ST-24">24</A>
Ozonolysis of
Bisallenyl-Substituted Compound 5
To a solution of 5 (0.37 g, 1.25 mmol) in MeOH (30 mL) argon
was bubbled for 5 min with cooling to -78 ˚C.
Then, the solution was treated with ozone until the solution remained
blue for 20 min, followed by oxygen for 5 min. The reaction mixture
was allowed to warm to r.t. within 1 h and the solvent was evaporated
in vacuo. Purification of the crude product by chromatography (alumina,
hexane-EtOAc, 4:1, 1:1 to 0:1) afforded diester 7 (0.080 g, 23%) as colorless crystals
and methyl ketone 8 (0.033 g, 10%)
as a pale yellow oil.
Diester 7:
mp 134-136 ˚C. ¹H NMR (250
MHz, CDCl3): δ = 1.66,
2.04 (AB system, J
AB = 11
Hz, 2 H, CH2), 2.60-2.88, 3.00-3.15
(2 m, 4 H each, 8 CH), 3.80 (s, 6 H, CO2Me). ¹³C
NMR (62.9 MHz, CDCl3): δ = 43.2
(t, CH2), 42.1, 45.2, 49.2, 58.6 (4 d, CH), 52.2 (q,
OMe), 94.7 (s, C-3, C-5), 170.7 (s, CO2Me).
IR (KBr): 2990-2840 (CH), 1720 (C=O) cm-¹. MS
(EI, 80 eV): m/z (%) = 276
(2) [M]+, 245 (4) [M - OMe]+,
218 (15), 217 (100) [M - CO2Me]+.
HRMS (80 eV): m/z calcd for
C15H16O5: 276.0998; found: 276.0978.
Methyl
ketone 8: ¹H NMR (250
MHz, CDCl3): δ = 1.52, 1.89
(AB system, J
AB = 11
Hz, 2 H, CH2), 2.27 (s, 3 H, Me), 2.32 (mc,
1 H, CH), 2.62-2.67, 2.71-2.76 (2 m, 2 H, 1 H,
3 CH), 2.77-2.81, 2.84-2.88, 2.94-2.99,
3.08-3.13 (4 m, 1 H each, CH), 3.27, 3.32 (2 s, 3 H each,
OMe), 3.73 (s, 3 H, CO2Me). ¹³C
NMR (62.9 MHz, CDCl3): δ = 28.2
(q, Me), 43.1 (t, CH2), 41.6, 42.1, 44.7, 45.6, 46.0,
49.0, 55.9, 58.9 (8 d, CH), 51.4, 51.7, 52.0 (3 q, OMe), 94.2, 98.7,
102.8 [3 s, C(OMe)2,
C-3, C-5], 171.5 (s, CO2Me),
205.9 (s, COMe). MS (FAB+,
80 eV): m/z (%) = 357
(4) [M + Na]+, 335
(3) [MH]+, 304 (18), 303 (85),
291 (100) [M - MeCO]+,
154 (17), 137 (25), 136 (19), 105 (21), 81 (26), 69 (34), 55 (49), 43
(47).
<A NAME="RG16208ST-25">25</A>
Hormuth S.
Reissig H.-U.
Dorsch D.
Liebigs
Ann. Chem.
1994,
121
<A NAME="RG16208ST-26A">26a</A> For
a mechanistic discussion of the ozonolysis of allenes, see:
Langler RF.
Raheja RK.
Schank K.
Beck H.
Helv.
Chim. Acta
2001,
84:
1943 ;
and references therein
<A NAME="RG16208ST-26B">26b</A>
The formation of diester 7 can be rationalized by single-electron
transfers via intermediates A to D, whereas the formation of the methyl
ketone 8 is more speculative. Therefore,
a single-electron transfer to intermediate C by O2
- and
conversion of the carbonyl group into an acetal moiety by the solvent
methanol may lead to this side product (Scheme
[²]
).
For epoxidations using chiral crown
ethers, see:
<A NAME="RG16208ST-27A">27a</A>
Bakó P.
Bakó T.
Mészáros A.
Keglevich G.
Szőllősy A.
Bodor S.
Makó A.
Tőke L.
Synlett
2004,
643
<A NAME="RG16208ST-27B">27b</A>
Hori K.
Tamura M.
Tani K.
Nishiwaki N.
Ariga M.
Tohda Y.
Tetrahedron
Lett.
2006,
47:
3115 ;
and references cited therein
<A NAME="RG16208ST-28">28</A>
Stock HT.
Kellogg RM.
J. Org. Chem.
1996,
61:
3093
<A NAME="RG16208ST-29">29</A>
It should be noted that the yield
of 11 may be enhanced by a template-directed
reaction of 9 and 10 (e.g.,
by the use of a Cs salt). See also ref. 15.
<A NAME="RG16208ST-30">30</A>
Reaction of 9
and 10
To a suspension of NaH (4 mg, 0.16 mmol) in
THF (1 mL) were added a solution of 9 (18
mg, 0.08 mmol, dissolved in 5 mL of THF) and a solution of 10 (43 mg, 0.08 mmol, dissolved in 10 mL
of THF) over a period of 30 min. The reaction mixture was refluxed
for 84 h and after cooling to r.t. H2O (10 mL) was added,
and the phases were separated. The aqueous phase was extracted with
CH2Cl2 (3 × 20
mL) and the combined organic phases were dried with MgSO4. Purification
of the crude product by chromatography (SiO2, hexane-EtOAc,
4:1, 1:1, then 1:3) gave product 11 (3
mg, 7%) as a pale yellow resin and starting material 10 (5 mg, 12%).
Product 11: [α]D = 6.7
(c 0.08, CHCl3). ¹H
NMR (250 MHz, CDCl3): δ = 0.83,
0.87 (2 d, J = 10
Hz, 1 H each, CH2), 0.99-1.80 (m, 8 H, CH),
3.25-4.55 (m, 12 H, OCH2), 7.05-7.35
(m, 6 H, Ar), 7.40 (d, J = 8
Hz, 2 H, Ar), 7.85 (d, J = 2 Hz,
2 H, Ar), 7.97 (d, J = 2
Hz, 2 H, Ar). MS (EI, 80 eV, 240 ˚C): m/z (%) = 558
(6) [M]+, 356 (10), 327 (10),
284 (13), 269 (18), 268 (14), 239 (14), 129 (12), 123 (23), 113 (10),
111 (16), 109 (12), 105 (10), 99 (14), 97 (24), 96 (18), 91 (35),
85 (24), 83 (30), 82 (18), 74 (29), 72 (35), 55 (53), 44 (23), 43
(100) [MeCO]+, 41 (47), 26
(43). HRMS (80 eV): m/z calcd
for C37H34O5: 558.24060; found:
558.24255.
For chiral recognition of racemic
primary amines by BINOL-containing crown ethers, see:
<A NAME="RG16208ST-31A">31a</A>
Kyba EP.
Koga K.
Sousa LR.
Siegel MG.
Cram DJ.
J. Am. Chem. Soc.
1973,
95:
2692
<A NAME="RG16208ST-31B">31b</A>
Cram DJ.
Science
1974,
183:
803
<A NAME="RG16208ST-31C">31c</A>
Yamamoto K.
Yunioka H.
Okamoto Y.
Chikamatsu H.
J. Chem. Soc., Chem. Commun.
1987,
168
<A NAME="RG16208ST-31D">31d</A>
Galán A.
Andreu D.
Echavarren AM.
Prados P.
de Mendoza J.
J. Am. Chem. Soc.
1992,
114:
1511 ; see also refs. 15 and 16