Synlett 2008(13): 1981-1984  
DOI: 10.1055/s-2008-1077948
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Glycosylation Using ODS Adsorption Method Based on the Affinity of Long Alkoxybenzyl Glycoside

Hiroshi Imagawa*, Atsushi Kinoshita, Hirofumi Yamamoto, Kosuke Namba, Mugio Nishizawa*
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
Fax: +81(88)6553051; e-Mail: mugi@ph.bunri-u.ac.jp;
Further Information

Publication History

Received 30 April 2008
Publication Date:
15 July 2008 (online)

Abstract

p-Oleyloxybenzyl (POB) glycoside, selectively removable with TMSOTf, was developed as a protecting group for the glycosyl acceptor. Activation of the trichloroacetimidate was efficiently accomplished using 20 mol% of Cu(OTf)2. Purification of the resulting glycoside was rapidly and efficiently accomplished by an ODS adsorption method based on the significant affinity of long alkyl chains and the ODS. The procedure is particularly useful for convergent oligosaccharide synthesis.

    References and Notes

  • 1a Varki A. Cummings R. Esko J. Freeze H. Hart G. Marth J. Essentials of Glycobiology   Cold Spring Harbor Laboratory Press; New York: 1999. 
  • 1b Dwek RA. Butters TA. Chem. Rev.  2002,  102:  283 
  • 2a Frechet JM. Schuerch C. J. Am. Chem. Soc.  1971,  93:  492 
  • 2b Danishefsky SJ. McClure KF. Randolph JT. Ruggeri RB. Science  1993,  260:  1307 
  • 2c Seeberger PH. Haase W.-C. Chem. Rev.  2000,  100:  4349 
  • Recent reports of solid-supported glycosylations:
  • 3a Liang R. Yan L. Loebach J. Ge M. Uozumi Y. Sekanina K. Horan N. Gildersleeve J. Thompson C. Smith A. Biswas K. Still WC. Kahne D. Science  1996,  274:  1520 
  • 3b Nicolaou KC. Watanabe N. Li J. Pastor J. Winssinger N. Angew. Chem. Int. Ed.  1998,  37:  1559 
  • 3c Andrade RB. Plante OJ. Melean LG. Seeberger PH. Org. Lett.  1999,  1:  1811 
  • 3d Hummel G. Hindsgaul O. Angew. Chem. Int. Ed.  1999,  38:  1782 
  • 3e Roussel F. Knerr L. Grathwohl M. Schmidt RR. Org. Lett.  2000,  2:  3043 
  • 3f Plante OJ. Palmacci ER. Seeberger PH. Science  2001,  291:  1523 
  • 3g Lam SN. Gervay-Hague J. Carbohydr. Res.  2002,  337:  1953 
  • 3h Wu X. Grathwohl M. Schmidt RR. Angew. Chem. Int. Ed.  2002,  41:  4489 
  • 3i Mogemark M. Elofsson M. Kihlberg J. J. Org. Chem.  2003,  68:  7281 
  • 3j Ratner DM. Swanson ER. Seeberger PH. Org. Lett.  2003,  5:  4717 
  • 3k Mogemark M. Gustafsson L. Bengtsson C. Elofsson M. Kihlberg J. Org. Lett.  2004,  6:  4885 
  • 3l Love KR. Seeberger PH. Angew. Chem. Int. Ed.  2004,  43:  602 
  • 3m Jaunzems J. Kashin D. Schönberger A. Kirschning A. Eur. J. Org. Chem.  2004,  3435 
  • 3n Ako T. Daikoku S. Ohtsuka I. Kato R. Kanie O. Chem. Asian J.  2006,  1:  798 
  • 3o Kanie O. Ohtsuka I. Ako T. Daikoku S. Kanie Y. Kato R. Angew. Chem. Int. Ed.  2006,  45:  3851 
  • 3p Jonke S. Liu K.-g. Schmidt RR. Chem. Eur. J.  2006,  12:  1274 
  • 3q Matsushita T. Hinou H. Fumoto M. Kurogochi M. Fujitani N. Shimizu H. Nishimura S.-I. J. Org. Chem.  2006,  71:  3051 
  • 3r Doi T. Kinbara A. Inoue H. Takahashi T. Chem. Asian J.  2007,  2:  188 
  • 3s Manabe S. Ueki A. Ito Y. Chem. Commun.  2007,  3673 
  • 4a Ando H. Manabe S. Nakahara Y. Ito Y. Angew. Chem. Int. Ed.  2001,  40:  4725 
  • 4b Egusa K. Kusumoto S. Fukase K. Synlett  2001,  777 
  • 4c Ito Y. Manabe S. Chem. Eur. J.  2002,  8:  3077 
  • 4d Egusa K. Kusumoto S. Fukase K. Eur. J. Org. Chem.  2003,  3435 
  • 4e Hanashima S. Manabe S. Ito Y. Synlett  2003,  979 
  • 4f MacCoss RN. Brennan PE. Ley SV. Org. Biomol. Chem.  2003,  1:  2029 
  • 4g Hanashima S. Manabe S. Inamori K.-I. Taniguchi N. Ito Y. Angew. Chem. Int. Ed.  2004,  43:  5674 
  • 4h Komba S. Kitaoka M. Kasumi T. Eur. J. Org. Chem.  2005,  5313 
  • 4i Fukase K. Takashina M. Hori Y. Tanaka D. Tanaka K. Kusumoto S. Synlett  2005,  2342 
  • 4j Hanashima S. Manabe S. Ito Y. Angew. Chem. Int. Ed.  2005,  44:  4218 
  • 4k Wu J. Guo Z. J. Org. Chem.  2006,  71:  7067 
  • The glycosylations using fluorous tags:
  • 5a Curran DP. Ferritto R. Hua Y. Tetrahedron Lett.  1998,  39:  4937 
  • 5b Goto K. Miura T. Mizuno M. Takaki H. Imai N. Murakami Y. Inazu T. Synlett  2004,  2221 
  • 5c Jing Y. Huang X. Tetrahedron Lett.  2004,  45:  4615 
  • 5d Miura T. Inazu T. Tetrahedron Lett.  2003,  44:  1819 
  • 5e Manzoni L. Castelli R. Org. Lett.  2004,  6:  4195 
  • 5f Mizuno M. Matsumoto H. Goto K. Hamasaki K. Tetrahedron Lett.  2006,  47:  8831 
  • 5g The glycosylation using ionic tag: Kojima M. Nakamura Y. Takeuchi S. Tetrahedron Lett.  2007,  48:  4431 
  • 5h Pathak AK. Yerneni CK. Young Z. Pathak V. Org. Lett.  2008,  10:  145 
  • 6a Bauer J. Rademann J. J. Am. Chem. Soc.  2005,  127:  7296 
  • 6b An affinity of polyethylene glycol linker with silica gel was used for purification of glycoside. See: Jiang L. Hartley RC. Chan T.-H. Chem. Commun.  1996,  2193 
  • 7 The synthesis of rhamnoside by using p-dodecyloxybenzyl ether as a protection of an alcohol at C-2 was reported. See: Pozsgay V. Org. Lett.  1999,  1:  477 
  • 8 Critchley P. Clarkson GJ. Org. Biomol. Chem.  2003,  1:  4148 
  • 9 The Cu(OTf)2-prompted glycosylation in benzotrifluoride was reported. See: Yamada H. Hayashi T. Carbohydr. Res.  2002,  337:  581 
  • 10 Eckhardt M. Barth H. Blöcker D. Aktories K. J. Biol. Chem.  2000,  275:  2328 
11

Synthesis of Trisaccharide 8 Using an ODS Adsorption Method - General Procedure
To a stirred suspension of Cu(OTf)2 (30 mg, 0.084 mmol) and 4 Å MS (powder, 50 mg) in anhyd CH2Cl2 (3 mL) was added a solution of diol 6 (300 mg, 0.42 mmol) at r.t., and the mixture was stirred for 20 min. To this was added a solution of trichloroacetimidate 7 (936 mg, 1.47 mmol) in CH2Cl2 (3 mL) using a syringe drive over a period of 1 h, and the mixture was stirred for 12 h at the same temperature. The reaction was terminated by the addition of Et3N (720 mg, 7.12 mmol). Insoluble material was removed by passing through a cotton Celite pad, and the filtrate was concentrated under reduced pressure. The resulting material was dissolved in MeCN (100 mL) and adsorbed onto an ODS column (20 g), and the polar byproducts were eluted with MeCN (100 mL). Trisaccharide 8 (666 mg, 95% yield) was recovered by the elution with CH2Cl2.
Compound 8: [α]D ²² +41.5 (c 1.9, CHCl3). FT-IR (neat): 3087, 3062, 3004, 2925, 2855, 1951, 1878, 1809, 1745, 1611, 1585, 1511, 1496, 1454, 1368, 1285, 1237, 1132, 1101, 1050, 1026, 981, 913, 840, 736, 699, 604 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.89 (3 H, t, J = 6.8 Hz), 1.27-1.46 (22 H, m), 1.74-1.81 (2 H, m), 2.01-2.07 (4 H, m), 2.09 (3 H, s), 2.17 (3 H, s), 3.61-3.70 (3 H, m), 3.73-3.78 (2 H, m), 3.82-3.95 (11 H, m), 3.99 (1 H, dd, J = 9.2, 3.2 Hz), 4.03 (1 H, dd, J = 9.2, 3.2 Hz), 4.19 (1 H, dd, J = 9.6, 3.2 Hz), 4.31 (1 H, d, J = 11.6 Hz), 4.41-4.70 (12 H, m), 4.54 (1 H, d, J = 11.6 Hz), 4.76 (1 H, d, J = 11.2 Hz), 4.83 (1 H, d, J = 1.6 Hz), 4.88 (2 H, dd, J = 10.8, 3.2 Hz), 4.98 (1 H, d, J = 2.0 Hz), 5.20 (1 H, d, J = 1.6 Hz), 5.33-5.41 (2 H, m), 5.50-5.52 (2 H, m), 6.75-6.78 (2 H, m), 7.12-7.35 (42 H, m). ¹³C NMR (100 MHz, CDCl3): δ = 14.4 (q), 21.3 (q), 21.5 (q), 22.3 (t), 26.3 (t), 27.4 (t), 29.5-30.0 (many t), 32.2 (t), 32.9 (t), 66.7 (t), 68.2 (t), 68.7 (d, 2 C), 68.9 (t), 69.0 (d), 69.2 (t), 71.5 (d), 71.6 (d, 2 C), 72.0 (t), 72.4 (d), 72.4 (t), 73.6 (t), 73.6 (t), 74.4 (d), 74.5 (d), 75.2 (t), 75.3 (d), 75.4 (t), 77.5 (d), 77.8 (d), 77.9 (d), 78.3 (d), 79.0 (d), 95.7 (d), 98.2 (d), 99.9 (d), 114.6 (d), 127.7-130.2 (many d), 138.0 (s), 138.1 (s), 138.1 (s), 138.3 (s), 138.5 (s), 138.5 (s), 138.8 (s), 138.9 (s), 159.0 (s), 170.4 (s), 170.6 (s). MS (FAB, m-NBA): m/z = 1689 [M + Na]+. HRMS (FAB): m/z calcd for C103H124O19Na [M + Na]+: 1687.8635; found: 1687.8654.

12

No other products were detected in the ¹³C NMR spectrum of the saccharide.

13

In the reaction using 2-acetylated trichloroacetimidate as glycosyl donor, an ortho ester such as 22 was produced as an intermediate. By continuing treatment with Cu(OTf)2 (12 h), the ortho ester was transformed to the desired glycoside (Figure  [²] ).

14

The anomeric stereochemistry of 12 was determined from the coupling constants J CH for anomeric carbons (164 Hz). Although the β-isomer was separable using HPLC, it was not possible to determine the stereochemistry by NMR spectroscopy due to insufficient sample. However, as the high-resolution mass spectrum suggested the structure of a tetrasaccharide, we concluded the stereochemistry is β.

15

Compound 16 was prepared in 96% yield from the disaccharide 19 by treatment with HF˙pyridine.