Synlett 2008(11): 1744-1745  
DOI: 10.1055/s-2008-1077826
© Georg Thieme Verlag Stuttgart · New York


Ewen Bodio*
CEISAM, UMR CNRS 6230, Chimie et Interdisciplinarité Synthèse, Analyse, Modélisation, UFR des Sciences et des Techniques, Université de Nantes,, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
Further Information

Publication History

Publication Date:
11 June 2008 (online)


Electrophilic amination gains more and more importance with the increasing interest in primary amines. Indeed they are valuable as synthetic intermediates or entries into nitrogen-containing heterocyclic systems. Moreover, electrophilic amination allows a direct metal-free access to hydrazines.

To perform electrophilic amination, activated hydroxyl­amines are the most common kind of reagents used. [1] Lots of such hydroxylamines exist, but O-(diphenylphosphinyl)hydroxylamine (1) presents many advantages. In fact, it has the most extensive track record for amination. [2] Compared to other activated hydroxylamines, the diphen­ylphosphinyl reagent has the best reputation for stability: The solid compound may be stored for long periods at 0 °C and does not show any degradation when employed below 140 °C. [3] It presents only a low tendency toward side reactions and supports strong bases like lithium diisopropylamide or butyllithium. [1]

Compound 1 is not commercially available but it can be readily and rapidly prepared in a one-step reaction from diphenylphosphonic chloride and hydroxylamine. [4]

Scheme 1


  • 1 Erdik E. Ay M. Chem. Rev.  1989,  89:  1947 
  • 2 Boche G. Bernheim M. Schrott W. Tetrahedron Lett.  1982,  23:  5399 
  • 3 Klötzer W. Baldinger H. Karpitschka EM. Knoflach J. Synthesis  1982,  592 
  • 4 Colvin EW. Kirby GW. Wilson C. Tetrahedron Lett.  1982,  23:  3835 
  • 5a Pfefferkorn JA. Nugent R. Gross RJ. Greene M. Mitchell MA. Reding MT. Funk LA. Anderson R. Wells PA. Shelly JA. Anstadt R. Finzel BC. Harris MS. Kilkuskie RE. Kopta LA. Schwende FJ. Bioorg. Med. Chem. Lett.  2005,  15:  2812 
  • 5b Smulik JA. Vedejs E. Org. Lett.  2003,  5:  4187 
  • 6 Baldwin JE. Adlington RM. Jones RH. Schofield CJ. Zaracostas C. Greengrass CW. Tetrahedron  1986,  42:  4879 
  • 7a Badorrey R. Cativiela C. Díaz-de-Villegas MD. Gálvez JA. Tetrahedron: Asymmetry  1995,  6:  2787 
  • 7b Cativiela C. Díaz-de-Villegas MD. Gálvez JA. Tetrahedron: Asymmetry  1994,  5:  1465 
  • 8 Macaulay JB. Fallis AG. J. Am. Chem. Soc.  1990,  112:  1136 
  • 9 Aurell MJ. Gil S. Martinez PV. Parra M. Tortajada A. Mestres R. Synth. Commun.  1991,  21:  1833 
  • 10a Elliot EL. Bushell SM. Cavero M. Tolan B. Kelly TR. Org. Lett.  2005,  7:  2449 
  • 10b Cook GR. Kargbo R. Maity B. Org. Lett.  2005,  7:  2767 
  • 11 Belley M. Schweigetz J. Dubé P. Dolman S. Synlett  2001,  222 
  • 12a Heim-Riether A. Healy J. J. Org. Chem.  2005,  70:  7331 
  • 12b Borzilleri RM. Cai Z. Ellis C. Fargnoli J. Fura A. Gerhart T. Goyal B. Hunt JT. Mortillo S. Qian L. Tokarski J. Vyas V. Wautlet B. Zheng X. Bhide RS. Bioorg. Med. Chem.  2005,  15:  1429 
  • 13 Schmidhammer H. Obendorf D. Pirkner G.-F. Sams T. J. Org. Chem.  1991,  56:  3457 
  • 14 Armstrong A. Baxter CA. Lamont SG. Pape AR. Wincewicz R. Org. Lett.  2007,  9:  351