References and Notes
Reviews on polyquinanes:
<A NAME="RG00708ST-1A">1a</A>
Mehta G.
Srikrishna A.
Chem. Rev.
1997,
97:
671
<A NAME="RG00708ST-1B">1b</A>
Fu X.
Cook JM.
Aldrichimica Acta
1992,
25:
43
<A NAME="RG00708ST-1C">1c</A>
Paquette LA.
Top. Curr. Chem.
1984,
119:
1
<A NAME="RG00708ST-1D">1d</A>
Ramaiah M.
Synthesis
1984,
529
<A NAME="RG00708ST-1E">1e</A>
Trost BM.
Chem. Soc. Rev.
1982,
11:
141
<A NAME="RG00708ST-1F">1f</A>
Paquette LA.
Top. Curr. Chem.
1979,
79:
41
<A NAME="RG00708ST-1G">1g</A> For neorogiolane, see:
Srikrishna A.
Gowri V.
Tetrahedron: Asymmetry
2007,
18:
1663
<A NAME="RG00708ST-1H">1h</A> For tetramic acid lactams, see:
Capon RJ.
Skene C.
Lacey E.
Gill JH.
Wadsworth D.
Friedel T.
J. Nat. Prod.
1999,
62:
1256
For cylindramide, see:
<A NAME="RG00708ST-2A">2a</A>
Cramer N.
Buchweitz M.
Laschat S.
Frey W.
Baro A.
Mathieu D.
Richter C.
Schwalbe H.
Chem. Eur. J.
2006,
12:
2488
<A NAME="RG00708ST-2B">2b</A>
Cramer N.
Laschat S.
Baro A.
Schwalbe H.
Richter C.
Angew. Chem. Int. Ed.
2005,
44:
820 ; Angew. Chem. 2005, 117, 831
<A NAME="RG00708ST-2C">2c</A>
Kanazawa S.
Fusetani N.
Matsunaga S.
Tetrahedron Lett.
1993,
34:
1065
Some selected examples:
<A NAME="RG00708ST-3A">3a</A>
Harrington-Frost NM.
Pattenden G.
Tetrahedron Lett.
2000,
41:
403
<A NAME="RG00708ST-3B">3b</A>
Jasperse CP.
Curran DP.
Fevig TL.
Chem. Rev.
1991,
91:
1237
<A NAME="RG00708ST-3C">3c</A>
Seo J.
Fain H.
Blanc J.-B.
Montgomery J.
J. Org. Chem.
1999,
64:
6060
<A NAME="RG00708ST-3D">3d</A>
Saitoh F.
Mori M.
Okamura K.
Date T.
Tetrahedron
1995,
51:
4439
<A NAME="RG00708ST-3E">3e</A>
Piers E.
Orellana A.
Synthesis
2001,
2138
<A NAME="RG00708ST-3F">3f</A>
Laschat S.
Becheanu A.
Bell T.
Baro A.
Synlett
2005,
2547
<A NAME="RG00708ST-3G">3g</A>
Anderl T.
Emo M.
Laschat S.
Baro A.
Frey W.
Synthesis
2008, 1619
Reviews:
<A NAME="RG00708ST-4A">4a</A>
Vicario JL.
Badia D.
Carrillo L.
Synthesis
2007,
2065
<A NAME="RG00708ST-4B">4b</A>
Christoffers J.
Koripelly G.
Rosiak A.
Rössle M.
Synthesis
2007,
1279
<A NAME="RG00708ST-4C">4c</A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RG00708ST-4D">4d</A>
Lopez F.
Feringa BL. In Asymmetric Synthesis
Christmann M.
Bräse S.
Wiley-VCH;
Weinheim:
2007.
p.78-83
<A NAME="RG00708ST-4E">4e</A>
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
<A NAME="RG00708ST-4F">4f</A>
Guo H.-C.
Ma J.-A.
Angew. Chem. Int. Ed.
2006,
45:
354 ; Angew. Chem. 2006, 118, 362
<A NAME="RG00708ST-4G">4g</A>
Alexakis A. In Transition Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.553-562
<A NAME="RG00708ST-4H">4h</A>
Hayashi T.
Yamasaki K.
Chem. Rev.
2003,
103:
2829
<A NAME="RG00708ST-4I">4i</A>
Dilman AD.
Ioffe SL.
Chem. Rev.
2003,
103:
733
<A NAME="RG00708ST-4J">4j</A>
Alexakis A.
Benhaim C.
Eur. J. Org. Chem.
2002,
3221
<A NAME="RG00708ST-4K">4k</A>
Feringa BL.
Naasz R.
Imbos R.
Arnold LA. In Modern Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.224-258
<A NAME="RG00708ST-4L">4l</A>
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
<A NAME="RG00708ST-4M">4m</A>
Feringa BL.
Acc. Chem. Res.
2000,
33:
346
<A NAME="RG00708ST-5">5</A>
Majetich G.
Casares A.
Chapman D.
Behnke M.
J. Org. Chem.
1986,
51:
1745
<A NAME="RG00708ST-6A">6a</A>
Jacques T.
Marko IE.
Pospisil J. In Multicomponent Reactions
Zhu J.
Bienayme H.
Wiley-VCH;
Weinheim:
2005.
p.398-452
<A NAME="RG00708ST-6B">6b</A>
Hosomi A.
Miura K.
Bull. Chem. Soc. Jpn.
2004,
77:
835
<A NAME="RG00708ST-6C">6c</A>
Bianchini C.
Glendenning L.
Chemtracts: Inorg. Chem.
1995,
7:
107
<A NAME="RG00708ST-6D">6d</A>
Schinzer D.
Synthesis
1988,
263
<A NAME="RG00708ST-6E">6e</A>
Hosomi A.
Shirahata A.
Sakurai H.
Tetrahedron Lett.
1978,
3043
<A NAME="RG00708ST-6F">6f</A>
Hosomi A.
Sakurai H.
J. Am. Chem. Soc.
1977,
99:
1673
<A NAME="RG00708ST-6G">6g</A>
Hosomi A.
Sakurai H.
Tetrahedron Lett.
1976,
1295
<A NAME="RG00708ST-7">7</A> For cyclic enones and acyclic enoates, see also:
Kuhnert N.
Peverley J.
Robertson J.
Tetrahedron Lett.
1998,
39:
3215
Selected examples:
<A NAME="RG00708ST-8A">8a</A>
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
<A NAME="RG00708ST-8B">8b</A>
Hutchinson DK.
Fuchs PL.
Tetrahedron Lett.
1986,
27:
1429
<A NAME="RG00708ST-8C">8c</A>
House HO.
Fischer WF.
J. Org. Chem.
1969,
34:
3615
<A NAME="RG00708ST-9A">9a</A>
Hon Y.-S.
Chen F.-L.
Huang Y.-P.
Lu T.-J.
Tetrahedron: Asymmetry
1991,
2:
879
<A NAME="RG00708ST-9B">9b</A>
Scolastico C.
Pure Appl. Chem.
1988,
60:
1689
<A NAME="RG00708ST-9C">9c</A>
Bernardi A.
Cardani S.
Pilati T.
Poli G.
Scolastico C.
Villa R.
J. Org. Chem.
1988,
53:
1600
<A NAME="RG00708ST-9D">9d</A>
Bernardi A.
Cardani S.
Poli G.
Scolastico C.
J. Org. Chem.
1986,
51:
5041
<A NAME="RG00708ST-10">10</A>
Ito H.
Nagahara T.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
994 ; Angew. Chem. 2004, 116, 1012
<A NAME="RG00708ST-11A">11a</A>
Ooi T.
Kondo Y.
Maruoka K.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1183 ; Angew. Chem. 1997, 109, 1231
<A NAME="RG00708ST-11B">11b</A>
Ooi T.
Miura T.
Kondo Y.
Maruoka K.
Tetrahedron Lett.
1997,
38:
3947
<A NAME="RG00708ST-11C">11c</A>
Maruoka K.
Imoto H.
Saito S.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
4131
<A NAME="RG00708ST-12">12</A>
Brown JB.
Henbest HB.
Jones ERH.
J. Chem. Soc.
1950,
3634
<A NAME="RG00708ST-13">13</A>
Banwell MG.
Corbett M.
Gulbis J.
Mackay MF.
Reum ME.
J. Chem. Soc., Perkin Trans. 1
1993,
945
<A NAME="RG00708ST-14">14</A>
Naya A.
Sagara Y.
Ohwaki K.
Saeki T.
Ichikawa D.
Iwasawa Y.
Noguchi K.
Ohtake N.
J. Med. Chem.
2001,
44:
1429
<A NAME="RG00708ST-15">15</A>
Yang F.
Newsome JJ.
Curran DP.
J. Am. Chem. Soc.
2006,
128:
14200
<A NAME="RG00708ST-16">16</A>
Wright SW.
Hageman DL.
Wright AS.
McClure LD.
Tetrahedron Lett.
1997,
38:
7345
<A NAME="RG00708ST-17">17</A>
Collon S.
Kouklovsky C.
Langlois Y.
Eur. J. Org. Chem.
2002,
3566
<A NAME="RG00708ST-18">18</A>
The initial 1,2-adduct, an enone, is capable of further 1,2-addition, giving the tertiary
alcohol.5
<A NAME="RG00708ST-19">19</A>
General Procedures for the Allylation According Method B
In a Schlenk flask 4 Å MS (2.00 g) and TBAF (1.31 g, 0.50 mmol) were dried under high
vacuum for 30 min. Under N2 atmosphere DMF (15 mL) was added, the mixture stirred for 30 min, transferred via
cannula in a Schlenk flask with 4 Å MS (2.00 g), and stirred for a further 30 min.
A solution of the respective ester (1 mmol) in DMF (5 mL) was added followed by HMPA
(1.04 mL, 1.07 g, 6.00 mmol) and a solution of trimethylallylsilane (0.95 mL, 685
mg, 6.00 mmol) in DMF (5 mL) at 0 °C. After stirring at 0 °C for 10 min, 1 N HCl in
MeOH (5 mL) and H2O (40 mL) were successively added, and the aqueous layer was extracted with EtOAc
(2 × 100 mL). The combined organic layers were dried (MgSO4), concentrated under vacuum, and the crude product was chromatographed on SiO2 with hexanes-EtOAc.
Benzyl 2-Allylcyclohexanecarboxylate (15b)
R
f
= 0.37 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 0.89-0.98 (m, 1.5 H, CH2), 1.14-2.03 (m, 13.5 H, Ha-1′, Ha*-1′, H-2, H*-2, H-3, H*-3, H-4, H*-4, H-5, H*-5, H-6, H*-6), 2.06-2.16 (m, 2.5 H,
Hb-1′, Hb*-1′, H-1), 2.65 (dt, J = 8.1, 4.1 Hz, 0.5 H, H*-1) 4.90-4.98 (m, 2 H, H-3′), 5.06-5.15 (m, 3 H, ArCH
2, ArCH
2*), 5.65-5.76 (m, 1.5 H, H-2′, H*-2′), 7.29-7.38 (m, 7.5 H, Ar, Ar*) ppm. 13C NMR (125 MHz, CDCl3): δ = 22.6*, 23.8*, 25.4, 25.4*, 25.6, 28.0*, 30.1, 30.8 (C-3, C-4, C-5, C-6), 37.2*,
38.7 (C-2), 34.9*, 39.3 (C-1′), 44.8*, 49.4 (C-1), 65.8*, 65.9 (ArCH2), 115.9*, 116.3 (C-3′), 128.09*, 128.1, 128.1*, 128.2, 128.5, 128.5* (Ar), 136.0,
136.1* (Ar), 136.3, 137.3* (C-2′), 174.6*, 175.9 (CO) ppm. (* denotes minor diastereomer).
FT-IR (ATR): 2319 (s), 2856 (s), 2360 (s), 1732 (vs), 1259 (s), 1164 (s), 749 (vs)
cm-1. MS (ESI): m/z (%) = 241 (15) [M+ - O], 223 (36), 131 (28), 117 (20), 91 (71) [C7H7
+]. HRMS (ESI): m/z calcd for C17H22NaO2 [M + Na]: 281.1512; found: 281.1503.
Benzyl (3a′
R
,4′
R
,5′
R
,6a′
S
)-4′-Allylhexahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalene]-5′-carboxylate (4)
R
f
= 0.58 (hexanes-EtOAc, 6:1); [α]D
20 +23 (c 1.00, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 1.45 (ddd, J = 12.6, 7.3, 2.7 Hz, 1 H, Ha-2′), 1.66-1.71 (m, 1 H, Ha-3′), 1.74-1.87 (m, 2 H, Ha-6, Hb-2′), 1.89-1.98 (m, 2 H, H-4′, Hb-3′), 2.04 (ddd, J = 12.9, 8.6, 6.3 Hz, 1 H, Hb-6′), 2.10-2.27 (m, 3 H, H-1′′, H-3a′), 2.35-2.44 (m, 2 H, H-5′, H-6a′), 3.79-3.98
(m, 4 H, OCH2CH2O), 5.09 (d, J = 5.3 Hz, 2 H, CH
2Ph), 4.92 (ddt, J = 10.0, 2.1, 1.0 Hz, 1 H, Ha-3′′), 4.98 (ddt, J = 17.1, 2.1, 1.4 Hz, 1 H, Hb-3′′), 5.73 (ddt, J = 17.1, 10.0, 7.2 Hz, 1 H, H-2′′), 7.28-7.38 (m, 5 H, Ph) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.8 (C-2′), 32.9, 33.1 (C-6′, C-3′), 37.8 (C-1′′), 46.7 (C-3a′), 48.9, 51.1
(C-5′, C-6a′), 50.4 (C-4′), 63.8, 64.8 (OCH2CH2O), 66.1 (CH2Ph), 116.3 (C-3′′), 118.2 (C-1′), 127.6, 128.1, 128.2 (Ph), 136.1 (CH2
Ph), 136.4 (C-2′′), 174.6 (CO) ppm. FT-IR (ATR): 2946 (w), 2880 (w), 2362 (w), 2342
(w), 1455 (w), 1338 (w), 1152 (s), 1023 (s), 697 (s) cm-1. GC-MS (EI): m/z (%) = 342 (2) [M+], 301 (8) [M+ - C3H5], 251 (6) [M+ - C7H7], 223 (6), 207 (14) [M+ - CO2CH2C6H5], 107 (10) [C7H7O+], 99 (100), 91 (30) [C7H7
+]. HRMS (ESI): m/z calcd for C21H26O4Νa [M + Na]: 365.1723; found: 365.1722.
<A NAME="RG00708ST-20">20</A>
General Procedures for the Allylation According Method C
Trimethyl aluminium (1.10 mL, 1 M in hexane, 1.10 mmol) was slowly added to a solution
of 2,6-diphenylphenol (813 mg, 3.30 mmol) in toluene (6 mL) in a Schlenk flask, and
the mixture stirred at r.t. for 30 min. Then a solution of the respective ester (1.00
mmol) in toluene (3 mL) was added. After 5 min, the mixture was cooled to -78 °C and
stirred for 1 h. In a further flask n-BuLi (0.88 mL, 1.6 M in hexane, 1.40 mmol) was slowly added to a solution of allyltributyltin
(0.43 mL, 463 mg, 1.40 mmol) in THF (4 mL) at -78 °C, and after stirring for 45 min,
this allyllithium solution was transferred via cannula to the solution of the ATPH
complex, and the reaction mixture stirred at -78 °C for a further 45 min. The reaction
was quenched with MeOH (10 mL) and 1 N HCl (5 mL), and the aqueous layer extracted
with Et2O (50 mL). The organic layer was separated, dried (MgSO4), concentrated, and the crude product chromatographed on SiO2 with hexanes-EtOAc (50:1).
tert
-Butyl 2-Allylcyclopentanecarboxylate (11a)
R
f
= 0.74 (hexanes-EtOAc, 10:1). 1H NMR (300 MHz, CDCl3): δ = 1.21-1.27 (m, 1 H, Ha-3), 1.44 [s, 9 H, C(CH3)3], 1.45 [s, 4.5 H, C(CH3)3*], 1.49-1.54 (m, 1 H, Ha*-4, Ha*-3), 1.58-1.69 (m, 2 H, H-4), 1.70-2.00 (m, 5.5 H, Hb-3, H-5, Ha*-1′, Hb*-3, Hb*-4, H*-5), 2.02-2.09 (m, 1 H, Ha-1′), 2.09-2.18 (m, 1.5 H, H-2, H*-2), 2.19-2.29 (m, 2.5 H, H-1, Hb-1′, Hb*-1′), 2.78 (ddd, J = 7.8, 7.8, 5.6 Hz, 0.5 H, H*-1), 4.95-5.05 (m, 3 H, H-3′, H*-3′), 5.75-5.86 (m,
1.5 H, H-2′, H*-2′) ppm. 13C NMR (75 MHz, CDCl3): δ = 23.5*, 24.6 (C-4), 28.1, 28.2* [C(CH3)3], 28.3*, 30.2 (C-5), 30.7*, 32.1 (C-3), 35.4*, 39.3 (C-1′), 43.3*, 43.7 (C-2), 48.4*,
50.7 (C-1), 79.8, 80.0* [C(CH3)3], 115.3*, 115.6 (C-3′), 137.3, 137.9* (C-2′), 174.8*, 175.8 (CO) ppm. (* denotes
minor diastereomer). FT-IR (ATR): 1723 (s), 1365 (s), 1256 (s), 1144 (vs) cm-1. GC-MS (EI): m/z (%) = 210 (1) [M+], 154 (60) [M+ - C(CH3)], 137 (28) [M+ - OCMe3], 109 (56)
[M+ - CO2CMe3], 67 (32), 57 (100) [C4H9
+]. HRMS (ESI): m/z calcd for C13H22NaO2 [M + Na]: 233.1512; found: 233.1510.
tert
-Butyl 2-Allylcycloheptanecarboxylate (16a)
R
f
= 0.68 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 1.25-1.34 (m, 1 H, Ha-3), 1.37-1.51 (m, 3 H, Ha-4, CH2), 1.46 [s, 9 H, C(CH3)3], 1.53-1.75 (m, 6 H, Hb-3, Hb-4, H-7, CH2), 1.89-1.99 (m, 2 H, Ha-1′, H-2), 2.00-2.22 (m, 2 H, H-1, Hb-1′), 4.96-5.04 (m, 2 H, H-3′), 5.72-5.81 (m, 1 H, H-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 26.1, 26.2, 26.3*, 26.5* (C-5, C-6), 28.1, 28.2* [C(CH3)3], 28.3*, 29.3 (C-4), 28.6*, 30.3 (C-7), 30.7, 30.7* (C-3), 37.7*, 40.6 (C-1′), 40.2*,
40.5 (C-2), 48.2*, 51.8 (C-1), 79.7, 79.8* [C(CH3)3], 115.7*, 116.3 (C-3′), 137.1, 138.0* (C-2′), 175.1*, 176.4 (CO) ppm. FT-IR (ATR):
2923 (s), 1723 (vs), 1366 (s), 1142 (vs), 910 (s) cm-1. GC-MS (EI): m/z (%) = 238 (4) [M+], 181 (100) [M+ - CMe3], 165 (24) [M+ - OCMe3], 140 (14), 136 (16) [M+ - CO2CMe3], 122 (10), 109 (20), 95 (56), 81 (24), 67 (12), 57 (90) [C4H9
+], 41 (24) [C3H5
+], 29 (10). HRMS (ESI): m/z calcd for C15H27O2 [M + H]: 239.2006; found: 239.2017.
1-{(3a′
R
,6a′
S
)-3′,3a′6′,6a′-tetrahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalen]-5′-yl}but-3-en-1-one (20)
R
f
= 0.38 (hexanes-EtOAc, 6:1). 1H NMR (500 MHz, CDCl3): δ = 1.54-1.72 (m, 3 H, Ha-3′, H-2), 1.98 (dddd, J = 12.1, 10.7, 9.1, 6.5 Hz, 1 H, Hb-3′), 2.59-2.68 (m, 2 H, Ha-6′, H-6a′), 2.76 (dddd, J = 12.6, 2.9, 1.9, 1.9 Hz, 1 H, Hb-6′), 3.44 (dddd, J = 6.7, 2.2, 1.4, 1.4 Hz, 2 H, CH
2CH=CH2), 3.44-3.51 (m, 1 H, H-3a′), 3.85-3.95 (m, 4 H, OCH2CH2O), 5.09-5.20 (m, 2 H, CH2CH=CH
2), 5.96 (ddt, J = 17.2, 10.3, 6.7 Hz, 1 H, CH2CH=CH2), 6.52 (dddd, J = 3.7, 1.9, 1.9, 0.9 Hz, 1 H, H-4′) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.7 (C-3′), 32.9 (C-6′), 33.4 (C-2′), 44.2 (CH2CH=CH2), 46.3 (C-6a′), 49.6 (C-3a′), 63.9, 64.9 (OCH2CH2O), 118.2 (CH2
CH=CH2), 127.7 (C-1′), 131.4 (CH=), 143.6 (C-5′), 145.3 (C-4′), 197.6 (CO) ppm. FT-IR (ATR):
2952 (s), 2875 (s), 1665 (vs), 1617 (s), 1202 (s), 1105 (vs), 1028 (vs), 993 (s),
914 (s), 735 (s) cm-1. MS (ESI): m/z (%) = 257 (100)
[M + Na], 235 (6) [M + H], 211 (8), 193 (16) [M+ - C3H5], 173 (8), 149 (76) [C11H17
+], 131 (8), 121 (8) [C9H13
+], 105 (16), 99 (8). HRMS (ESI): m/z calcd for C14H19O3 [M + H]: 235.1329; found: 235.1320.
<A NAME="RG00708ST-21">21</A>
tert
-Butyl 2-(2-Hydroxyethyl)cyclopentane-carboxylate (13)
Ozone was passed through a solution of 11a (70 mg, 0.33 mmol) in MeOH-CH2Cl2-pyridine (4:4:1) at -78 °C. Then N2 was passed for 1 min, NaBH4 (33 mg, 0.84 mmol) was added, and the reaction mixture warmed to 0 °C and stirred
for 3 h. After quenching with a sat. NH4Cl soln (5 mL), the reaction mixture was extracted with EtOAc (20 mL). The combined
organic layers were washed with brine (10 mL), dried (MgSO4), and concentrated under vacuum. The residue was chromatographed on SiO2 with hexanes-EtOAc (3:1, R
f
= 0.34) to give 13 as a colorless oil (52 mg, 74%, dr 67:33). 1H NMR (500 MHz, CDCl3): δ = 1.18-1.28 (m, 1 H, Ha-3), 1.45 [s, 13.5 H, C(CH3)3, C(CH3)3*], 1.52-1.96 (m, 11 H, H-1′, H*-1′, Hb-3, H*-3, H-4, H*-4, H-5, H*-5), 2.11-2.25 (m, 1.5 H, H-2, H-2*), 2.29 (dt, J = 8.8, 7.8 Hz, 1 H, H-1), 2.76 (dt, J = 7.8, 4.6 Hz, 0.5 H, H*-1), 3.60-3.76 (m, 3 H, H-2′, H*-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 23.6*, 24.8 (C-4), 28.1, 28.2* [C(CH3)3], 28.5*, 30.6 (C-5), 31.2*, 33.3 (C-3), 34.1*, 38.4 (C-1′), 40.2, 40.6* (C-2), 48.4,
50.9 (C-1), 61.6, 62.2 (C-2′), 80.2*, 80.3 [C(CH3)3], 175.1*, 175.5 (CO) ppm. FT-IR (ATR): 2935 (s), 2871 (s), 1722 (vs), 1366 (s), 1145
(vs), 1051 (s), 847 (s) cm-1. GC-MS (EI): m/z (%) = 184 (1), 158 (18) [M+ - C(CH3)], 141 (44) [M+ - OCMe3], 129 (12), 112 (8) [M+ - CO2CMe3], 95 (50), 67 (16), 57 (100) [C4H9
+], 41 (18) [C3H5
+]. HRMS (ESI):
m/z calcd for C12H22NaO3 [M + Na]: 237.1461; found: 237.1453.
<A NAME="RG00708ST-22">22</A>
Tsunoi S.
Ryu I.
Okuda T.
Tanaka M.
Komatsu M.
Sonoda N.
J. Am. Chem. Soc.
1998,
120:
8692
<A NAME="RG00708ST-23">23</A>
Compound 19 was obtained from enantiomerically pure pentalene-1,4-dione monoacetal1b via α-acylation, reduction of the carbonyl group, and subsequent dehydration following
the method by Burgess.24
<A NAME="RG00708ST-24">24</A>
Burgess EM.
Penton HR.
Taylor EA.
J. Org. Chem.
1973,
38:
26