Subscribe to RSS
DOI: 10.1055/s-2008-1075664
© Georg Thieme Verlag KG Stuttgart · New York
Validierung des Deutschen Diabetes-Risiko-Scores mit metabolischen Risikofaktoren für Typ-2-Diabetes
Validation of the German Diabetes Risk Score with metabolic risk factors for type 2 diabetesPublication History
eingereicht: 13.12.2007
akzeptiert: 27.2.2008
Publication Date:
15 April 2008 (online)

Zusammenfassung
Hintergrund und Fragestellung: Der Deutsche Diabetes-Risiko-Score (DRS) wurde mit Daten der prospektiven Kohortenstudie EPIC-Potsdam (European Prospective Investigation into Cancer and Nutrition) am Deutschen Institut für Ernährungsforschung entwickelt: Mit anthropometrischen Merkmalen und Informationen zu Lebensstil und Ernährung wird die Erkrankungswahrscheinlichkeit für die nächsten 5 Jahre bestimmt. Um den DRS weiter zu validieren, untersuchten wir in einer Zufallsstichprobe der EPIC-Potsdam-Studie, ob der Score mit metabolischen Risikofaktoren des Typ-2-Diabetes assoziiert ist.
Methodik: Bei zufällig ausgewählten 2500 Teilnehmern der EPIC-Potsdam Studie wurden Glukose, HbA1c, Triglyzeride, HDL-Cholesterin, hs-CRP und γ-Glutamyltransferase bestimmt. Nach Ausschluss von Teilnehmern mit bestehendem Diabetes (n = 120), von Teilnehmern, für die nicht alle Biomarker bestimmbar waren (n = 92) und von Teilnehmern mit erhöhten Plasmaglukosewerten (Zufallsglukose ≥ 200 mg/dl oder Nüchternglukose ≥ 126 mg/dl, n = 9) oder erniedrigten Plasmaglukosewerten (< 50 mg/dl, n = 38) verblieben 2223 Personen (839 Männer und 1384 Frauen) zur weiteren Analyse; 640 von ihnen (252 Männer und 388 Frauen) waren zum Zeitpunkt der Blutentnahme nüchtern .
Ergebnisse: Der DRS war signifikant (p < 0.001) mit allen Biomarkern korreliert. Pearson-Korrelationskoeffizienten lagen zwischen 0,24 für Glukose und 0,45 für Triglyzeride. Während Konzentrationen von Glukose, HbA1c, Triglyzeriden, hs-CRP und γ-Glutamyltransferase mit höheren DRS-Punktwerten anstiegen, war HDL-Cholesterin invers assoziiert. Die Konzentrationen von Glukose, HbA1c und Triglyzeriden lagen für Personen mit < 300 DRS-Punkten bei im Mittel 83 mg/dl, 6,2 % und 62 mg/dl. Dagegen hatten Personen mit ≥ 700 DRS-Punkten im Mittel Werte von 100 mg/dl Glukose, 6,9 % HbA1c und 171 mg/dl Triglyzeride. HDL-Cholesterin lag mit 37,6 mg/dl für Personen mit ≥ 700 DRS-Punkten deutlich unter dem Mittel für Personen mit < 300 DRS-Punkten (55 mg/dl). Auch für hs-CRP und γ-Glutamyltransferase bestanden starke Konzentrationsgradienten abhängig vom DRS.
Folgerung: Der DRS ist ist geeignet, um Personen mit Prädiabetes mit hoher Sensitivität und Spezifität zu identifizieren. Er könnte als Grundlage einer Vorsorgeuntersuchung für Typ-2-Diabetes mellitus genutzt werden.
Summary
Background and aims: The German Diabetes Risk Score (DRS) was developed at the German Institute of Human Nutrition from data of the European Prospective Investigation into Cancer and Nutrition (EPIC-Potsdam) in order to estimate the 5-year probability of developing type 2 diabetes, based on anthropometric measures and lifestyle as well as diet information. This study evaluated associations between the DRS and metabolic risk factors of type 2 diabetes for the purpose of further validating the risk score.
Methods: 2500 participants of the EPIC-Potsdam study were randomly selected, and glucose, HbA1c, triglycerides, HDL cholesterol, hs-C-reactive protein, and γ-glutamyltransferase were determined. After exclusion of participants with known diabetes (n = 120), those for whom not all biomarkers could be determined (n = 92) and those with elevated plasma glucose concentrations (random glucose ≥ 200 mg/dl or fasting glucose ≥ 126 mg/dl, n = 9) or with low plasma glucose concentrations (< 50 mg/dl, n = 38), the data on 2223 participants (839 men and 1384 women) remained for analysis of which 640 (252 men and 388 women) were fasting at the time blood samples had been obtained.
Results: The DRS significantly correlated with all biomarkers (p < 0.001). Pearson correlation coefficients ranged from 0.25 for glucose and 0.45 for triglycerides. While glucose, HbA1c, triglycerides, hs-CRP and γ-glutamyltransferase increased with increasing DRS points, HDL cholesterol was inversely associated. The mean concentrations of glucose, HbA1c and triglycerides for persons with < 300 DRS points were 83 mg/dl, 6.2 % und 62 mg/dl. In contrast, mean concentrations were 100 mg/dl for glucose, 6,9 % HbA1c und 171 mg/dl triglycerides among participants with ≥ 700 DRS points. HDL cholesterol was considerably lower (37.6 mg/dl) among participants with ≥ 700 DRS points than those with < 300 DRS points (55 mg/dl). There were also considerable differences in biomarker concentrations for hs-CRP and γ-glutamyltransferase in relation to the DRS. Associations were generally similar for men and women.
Conclusions: Our data suggest that the DRS allows to detect persons with prediabetes with high sensitivity and specificity. Thus the DRS could be used as a routine medical checkup in programs for the prevention of type 2 diabetes.
Schlüsselwörter
Typ-2-Diabetes mellitus - Risiko - Risiko-Score - Prädiabetes - HbA1c - Gamma-Glutamyltransferase - C-reaktives Protein - Glukose - Triglyzeride - HDL-Cholesterin
Key words
type 2 diabetes - risk - risk score - prediabetes - HbA1c - gamma-glutamyltransferase - C-reactive protein - glucose - triglyceride - HDL-cholesterol
Literatur
- 1
Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S. et al .
A risk score for predicting incident diabetes in the Thai population.
Diabetes Care.
2006;
29
1872-1877
MissingFormLabel
- 2
Alberti K G, Zimmet P, Shaw J.
The metabolic syndrome - a new worldwide definition.
Lancet.
2005;
366
1059-1062
MissingFormLabel
- 3
Alexander C M, Landsman P B, Teutsch S M.
Diabetes mellitus, impaired fasting glucose, atherosclerotic risk factors, and prevalence
of coronary heart disease.
Am J Cardiol.
2000;
86
897-902
MissingFormLabel
- 4 Altenhofen L. Hochrechnung zur Akzeptanz von Gesundheitsuntersuchungen und Krebsfrüherkennungsuntersuchungen
bei gesetzlich Versicherten. Zentralinstitut für die kassenärztliche Versorgung in der Bundesrepublik Deutschland
(ZI) Berlin 2005
MissingFormLabel
- 5
Andre P, Balkau B, Born C, Charles M A, Eschwege E.
Three-year increase of gamma-glutamyltransferase level and development of type 2 diabetes
in middle-aged men and women: the D.E.S.I.R. cohort.
Diabetologia.
2006;
49
2599-2603
MissingFormLabel
- 6
Barroso I.
Genetics of Type 2 diabetes.
Diabet Med.
2005;
22
517-35
MissingFormLabel
- 7
Boeing H, Wahrendorf J, Becker N.
EPIC-Germany - a source for studies into diet and risk of chronic diseases.
Ann Nutr Metab.
1999;
43
195-204
MissingFormLabel
- 8
Charlton-Menys V, Liu Y, Moorhouse A, Durrington P N.
The robustness of the Roche 2nd generation homogenous HDL cholesterol (PEGME) method:
assessment of the effect of serum sample storage for up to 8 years at - 80 degrees
C.
Clin Chim Acta.
2007;
382
142-144
MissingFormLabel
- 9
Chiasson J L, Josse R G, Gomis R, Hanefeld M, Karasik A, Laakso M.
Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.
Lancet.
2002;
359
2072-2077
MissingFormLabel
- 10
Conen D, Ridker P M, Mora S, Buring J E, Glynn R J.
Blood pressure and risk of developing type 2 diabetes mellitus: The Women’s Health
Study.
Eur Heart J.
2007;
28
2937-2943
MissingFormLabel
- 11
de Vegt F, Dekker J M, Jager A, Hienkens E, Kostense P J, Stehouwer C D. et al .
Relation of impaired fasting and postload glucose with incident type 2 diabetes in
a Dutch population: The Hoorn Study.
JAMA.
2001;
285
2109-2113
MissingFormLabel
- 12
Genuth S, Alberti K G, Bennett P, Buse J. et al .
Follow-up report on the diagnosis of diabetes mellitus.
Diabetes Care.
2003;
26
3160-3167
MissingFormLabel
- 13 Giani G, Janka H U, Hauner H, Standl E, Schiel R, Neu A. et al .
Epidemiologie und Verlauf des Diabetes mellitus in Deutschland. In Scherbaum WA, Kiess W (Hrsg) Evidenzbasierte Diabetes-Leitlinien DDG. Deutsche Diabetes-Gesellschaft 2004MissingFormLabel - 14
Greiner M, Pfeiffer D, Smith R D.
Principles and practical application of the receiver-operating characteristic analysis
for diagnostic tests.
Prev Vet Med.
2000;
45
23-41
MissingFormLabel
- 15
Hauner H, Landgraf R, Schulze J, Spranger J, Standl E.
Prävention des Typ-2-Diabetes mellitus. Positionspapier des Nationalen Aktionsforums
für Diabetes mellitus.
Dtsch Med Wochenschr.
2005;
130
1053-1054
MissingFormLabel
- 16
Hu F B, Meigs J B, Li T Y, Rifai N, Manson J E.
Inflammatory markers and risk of developing type 2 diabetes in women.
Diabetes.
2004;
53
693-700
MissingFormLabel
- 17
Ishikawa S, Kayaba K, Gotoh T, Nakamura Y, Kario K, Ito Y. et al .
Comparison of C-reactive protein levels between serum and plasma samples on long-term
frozen storage after a 13.8 year interval: the JMS Cohort Study.
J Epidemiol.
2007;
17
120-124
MissingFormLabel
- 18
Kanaya A M, Fyr C L, de Rekeneire N, Shorr R I, Schwartz A V. et al .
Predicting the development of diabetes in older adults: the derivation and validation
of a prediction rule.
Diabetes Care.
2005;
28
404-408
MissingFormLabel
- 19
Knowler W C, Barrett-Connor E, Fowler S E, Hamman R F, Lachin J M, Walker E A. et al .
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med.
2002;
346
393-403
MissingFormLabel
- 20
Ko G T, Chan J C, Yeung V T, Chow C C, Tsang L W, Li J K. et al .
Combined use of a fasting plasma glucose concentration and HbA1c or fructosamine predicts
the likelihood of having diabetes in high-risk subjects.
Diabetes Care.
1998;
21
1221-1225
MissingFormLabel
- 21
Krakoff J, Funahashi T, Stehouwer C D, Schalkwijk C G, Tanaka S, Matsuzawa Y. et al .
Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian.
Diabetes Care.
2003;
26
1745-1751
MissingFormLabel
- 22
Lindstrom J, Tuomilehto J.
The diabetes risk score: a practical tool to predict type 2 diabetes risk.
Diabetes Care.
2003;
26
725-731
MissingFormLabel
- 23
Little R R, England J D, Wiedmeyer H M, Madsen R W, Pettitt D J, Knowler W C. et al .
Glycated haemoglobin predicts progression to diabetes mellitus in Pima Indians with
impaired glucose tolerance.
Diabetologia.
1994;
37
252-256
MissingFormLabel
- 24
McNeely M J, Boyko E J, Leonetti D L, Kahn S E, Fujimoto W Y.
Comparison of a clinical model, the oral glucose tolerance test, and fasting glucose
for prediction of type 2 diabetes risk in Japanese Americans.
Diabetes Care.
2003;
26
758-763
MissingFormLabel
- 25
Meisinger C, Lowel H, Heier M, Schneider A, Thorand B.
Serum gamma-glutamyltransferase and risk of type 2 diabetes mellitus in men and women
from the general population.
J Intern Med.
2005;
258
527-535
MissingFormLabel
- 26
Perry I J, Wannamethee S G, Shaper A G.
Prospective study of serum gamma-glutamyltransferase and risk of NIDDM.
Diabetes Care.
1998;
21
732-737
MissingFormLabel
- 27
Pradhan A D, Manson J E, Rifai N, Buring J E, Ridker P M.
C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA.
2001;
286
327-334
MissingFormLabel
- 28
Pradhan A D, Rifai N, Buring J E, Ridker P M.
Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women.
Am J Med.
2007;
120
720-727
MissingFormLabel
- 29
Schmidt M I, Duncan B B, Bang H, Pankow J S, Ballantyne C M, Golden S H. et al .
Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities
study.
Diabetes Care.
2005;
28
2013-2018
MissingFormLabel
- 30
Schulze M B, Hoffmann K, Boeing H, Linseisen J. et al .
An accurate risk score based on anthropometric, dietary, and lifestyle factors to
predict the development of type 2 diabetes.
Diabetes Care.
2007;
30
510-515
MissingFormLabel
- 31
Schulze M B, Holmberg C, Hoffmann K, Boeing H, Joost H G.
Entwicklung eines Kurzfragebogens zur Bestimmung des Diabetesrisikos auf Grundlage
des Deutschen Diabetes-Risiko-Scores.
Ernährungs-Umschau.
2007;
698-703
MissingFormLabel
- 32
Schulze M B, Hu F B.
Primary prevention of diabetes: What can be done and how much can be prevented?.
Ann Rev Public Health.
2005;
26
445-467
MissingFormLabel
- 33
Spranger J, Kroke A, Mohlig M, Bergmann M M, Ristow M, Boeing H. et al .
Adiponectin and protection against type 2 diabetes mellitus.
Lancet.
2003;
361
226-228
MissingFormLabel
- 34
Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann M M. et al .
Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective
population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam
Study.
Diabetes.
2003;
52
812-817
MissingFormLabel
- 35
Stern M P, Williams K, Haffner S M.
Identification of persons at high risk for type 2 diabetes mellitus: do we need the
oral glucose tolerance test?.
Ann Intern Med.
2002;
136
575-581
MissingFormLabel
- 36
Tuomilehto J, Lindstrom J, Eriksson J G, Valle T T, Hamalainen H. et al .
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with
impaired glucose tolerance.
N Engl J Med.
2001;
344
1343-1350
MissingFormLabel
- 37
Wannamethee S G, Lowe G D, Rumley A, Cherry L, Whincup P H, Sattar N.
Adipokines and risk of type 2 diabetes in older men.
Diabetes Care.
2007;
30
1200-1205
MissingFormLabel
- 38
Wilson P W.
Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring
Study.
Arch Intern Med.
2007;
167
1068-1074
MissingFormLabel
- 39
Yoshinaga H, Kosaka K.
High glycosylated hemoglobin levels increase the risk of progression to diabetes mellitus
in subjects with glucose intolerance.
Diabetes Res Clin Pract.
1996;
31
71-79
MissingFormLabel
Prof. Dr. Matthias B. Schulze
Fachgebiet Public Health Nutrition, Technische Universität München
Hochfeldweg 1
85350 Freising
Phone: 08161/712002
Email: matthias.schulze@wzw.tum.de