Synthesis 2008(16): 2665-2667  
DOI: 10.1055/s-2008-1067180
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Ring-Closing Metathesis as a Key Step in the Synthesis of 2-Pyridones and Pyridine Triflates

Timothy J. Donohoe*a, Lisa P. Fishlocka, Panayiotis A. Procopioub
a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
e-Mail: [email protected];
b GlaxoSmithKline Research & Development Limited, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
Further Information

Publication History

Received 19 May 2008
Publication Date:
17 July 2008 (online)

Abstract

The ring-closing metathesis transformation has been employed to construct a library of functionalized 2-pyridones and pyridine triflates. Using this mild approach, a range of substituent patterns can be built into the aromatic core, including groups which can be demanding to incorporate using alternative protocols.

    References

  • 1a Donohoe TJ. Orr AJ. Bingham M. Angew. Chem. Int. Ed.  2006,  45:  2664 
  • For the synthesis of aromatic carbocycles, see:
  • 1b Yoshida K. Toyoshima T. Imamoto T. Chem. Commun.  2007,  3774 
  • 1c Yoshida K. Kawagoe F. Iwadate N. Takahashi H. Imamoto T. Chem. Asian J.  2006,  1:  611 
  • 1d Yoshida K. Imamoto T. J. Am. Chem. Soc.  2005,  127:  10470 
  • 1e Chen P.-Y. Chen H.-M. Chen L.-Y. Tzeng J.-Y. Tsai J.-C. Chi P.-C. Li S.-R. Wang E.-C. Tetrahedron  2007,  63:  2824 
  • 1f Pelly SC. Parkinson CJ. van Otterlo WAL. de Koning CB. J. Org. Chem.  2005,  70:  10474 
  • For the synthesis of aromatic heterocycles, see:
  • 1g Donohoe TJ. Fishlock LP. Procopiou PA. Org. Lett.  2008,  10:  285 
  • 1h Donohoe TJ. Fishlock LP. Lacy AR. Procopiou PA. Org. Lett.  2007,  9:  953 
  • 1i Donohoe TJ. Orr AJ. Gosby K. Bingham M. Eur. J. Org. Chem.  2005,  1969 
  • 1j Dieltiens N. Stevens CV. Allaert B. Verpoort F. ARKIVOC  2005,  (i):  92 
  • 1k Dieltiens N. Stevens CV. De Vos D. Allaert B. Drozdzak R. Verpoort F. Tetrahedron Lett.  2004,  45:  8995 
  • 1l Fujimura O. Fu GC. Grubbs RH. J. Org. Chem.  1994,  59:  4029 
  • 1m van Otterlo WAL. Morgans GL. Madeley LG. Kuzvidza S. Moleele SS. Thornton N. de Koning CB. Tetrahedron  2005,  61:  7746 
  • 1n Chen Y. Zhang H. Nan F. J. Comb. Chem.  2004,  6:  684 
  • 2 Comins DL. Dehghani A. Tetrahedron Lett.  1992,  33:  6299 
  • 3a Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1992,  33:  4815 
  • 3b Meyers AI. Robichaud AJ. McKennon MJ. Tetrahedron Lett.  1992,  33:  1181 
  • 3c Aoki S. Fujimura T. Nakamura E. Kuwajima I. J. Am. Chem. Soc.  1988,  110:  3296 
  • 3d Echavarren AM. Stille JK. J. Am. Chem. Soc.  1987,  109:  5478 
  • 3e Cacchi S. Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1986,  27:  3931 
  • 4a Matolcsy G. Pesticide Chemistry   Elsevier; Oxford: 1998. 
  • 4b Kozhevnikov VN. Kozhevnikov DN. Nikitina TV. Rusinov VL. Chupakhin ON. Zabel M. Koenig B. J. Org. Chem.  2003,  68:  2882 
  • 4c Hsiao H.-Y. Cheng T.-J. Yang G.-M. Huang IJ. Chen RLC. Phytochem. Anal.  2008,  19:  136 
  • 4d Trost BM. McEachern EJ. Toste FD. J. Am. Chem. Soc.  1998,  120:  12702 
  • 4e Ando K. Matsuura I. Nawata Y. Endo H. Sasaki H. Okytomi T. Saehi T. Tamura G. J. Antibiot.  1978,  31:  533 
  • 4f Ando K. Suzuki S. Saeki T. Tamura G. Arima K. J. Antibiot.  1969,  22:  189 
  • 4g Nelson BD. Walter P. Ernster L. Biochim. Biophys. Acta, Bioenerg.  1977,  460:  157 
  • 4h Henry GD. Tetrahedron  2004,  60:  6043 
  • 4i Vlase L. Imre S. Muntean D. Leucuta SE. J. Pharm. Biomed. Anal.  2007,  44:  652 
  • 4j Kubota N. Terauchi Y. Kubota T. Kumagai H. Itoh S. Satoh H. Yano W. Ogata H. Tokuyama K. Takamoto I. Mineyama T. Ishikawa M. Moroi M. Sugi K. Yamauchi T. Ueki K. Tobe K. Noda T. Nagai R. Kadowaki T. J. Biol. Chem.  2006,  281:  8748 
  • 5 Pangborn AB. Giardello MA. Grubbs RH. Rosen RK. Timmers FJ. Organometallics  1996,  15:  1518 
  • 6a Jung ME. Shishido K. Davis LH. J. Org. Chem.  1982,  47:  891 
  • 6b Ritson DJ. Cox RJ. Berge J. Org. Biomol. Chem.  2004,  2:  1921