Synlett 2008(7): 1101-1102  
DOI: 10.1055/s-2008-1066990
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Hydrogen Peroxide: A Versatile Reagent in Organic Synthesis

Diego A. Gamba Sanchez*
Laboratoire de Synthèse Organique, UMR CNRS 7652, Ecole ­Polytechnique, DCSO, 91128 Palaiseau, France
e-Mail: diego.agamba@gmail.com;
Further Information

Publication History

Publication Date:
28 March 2008 (online)

Introduction

Hydrogen peroxide (H2O2) is a strong oxidizing agent and a weak acid in aqueous solution. It is a very pale blue liquid which appears colorless in dilute solution and is completely miscible with water. Hydrogen peroxide and its highly concentrated aqueous solutions (>65%) are soluble in a range of organic solvents, for example carboxylic esters. It decomposes in a violent reaction into water and oxygen if heated above 80 °C. It also decomposes under the influence of light and in the presence of metal ions or oxidizable organic materials. Hydrogen peroxide is commercially available in concentrations of 3-90% as a solution in water.

Hydrogen peroxide and water do not form azeotropic mixtures and can be completely separated by distillation. By fractional crystallization of highly concentrated solutions 100% pure hydrogen peroxide can be obtained. Pure hydrogen peroxide is usually only of academic interest and is not produced on industrial scale.

Hydrogen peroxide is manufactured by the autoxidation of 2-ethyl-9,10-dihydroxyanthracene to 2-ethylanthraquinone and hydrogen peroxide using oxygen from the air. [1]

    References

  • 1 Jones CW. Application of Hydrogen Peroxide and Derivatives   Royal Society of Chemistry; Cambridge: 1999. 
  • 2a Karimi B. Ghoreishi-Nezhad M. Clark JH. Org. Lett.  2005,  7:  625 
  • 2b Matteucci M. Bhalay G. Bradley M. Org. Lett.  2003,  5 :  5235 
  • 2c Mba M. Prins LJ. Licini G. Org. Lett.  2007,  9:  21 
  • 2d Sun J. Zhu C. Dai Z. Xang M. Pan Y. Hu H. J. Org. Chem.  2004,  69:  8500 
  • 3a Clay JM. Vedejs E. J. Am. Chem. Soc.  2005,  127:  5766 
  • 3b Makabe H. Kong LK. Hirota M. Org. Lett.  2003,  5:  27 
  • 3c Demay S. Volant F. Knochel P. Angew. Chem. Int. Ed.  2001,  40:  1235 
  • 4 Jonsson SY. Adolfsson H. Bäckvall J.-E. Org. Lett.  2001,  3:  3463 
  • 5 Usui Y. Sato K. Tanaka M. Angew. Chem. Int. Ed.  2003,  42:  5623 
  • 6 Trudeau S. Morgan JM. Shrestha M. Morken JP.
    J. Org. Chem.  2005,  70:  9538 
  • 7a Sgarbossa P. Scarso A. Michelin RA. Strukul G. Organometallics  2007,  26:  2714 
  • 7b Paneghetti C. Gavagnin R. Pinna F. Strukul G. Organometallics  1999,  18:  5057 
  • 8 Murahashi S. Ono S. Imada Y. Angew. Chem. Int. Ed.  2002,  41:  2366 
  • 9 Demnitz FW. Philippini C. Raphael RA. J. Org. Chem.  1995,  60:  5114 
  • 10a Lane BS. Vogt M. DeRosa VJ. Burgess K. J. Am. Chem. Soc.  2002,  124:  11946 
  • 10b Tong K.-H. Wong K.-Y. Chan TH. Org. Lett.  2003,  5:  3423 
  • 11 Marigo M. Franzen J. Poulsen TB. Zhuang W. Jørgensen KA. Org. Biomol. Chem.  2005,  3:  3883 
  • 12 Hodgson DM. Avery TD. Donohue AC. Org. Lett.  2002,  4:  1809 
  • 13 Gopinath R. Patel B. Org. Lett.  2000,  2:  577 
  • 14 Zhang Y. Shen Z. Tang J. Zhang Y. Kong L. Zhang Y. Org. Biomol. Chem.  2006,  4:  1478