Synlett 2008(4): 626-627  
DOI: 10.1055/s-2008-1032131
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Dimethyldioxirane (DMD)

Vishnu Prabhakar Srivastava*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad, U. P., 211002, India
e-Mail: prabhaker7777@yahoo.com;
Further Information

Publication History

Publication Date:
12 February 2008 (online)

Introduction

Dimethyldioxirane (DMD), a nonmetal organic oxidant, has the ability to transfer an oxygen atom to a wide range of substrates and functionalities, including C=C and C-H bonds in hydrocarbons as well as atoms containing lone pairs such as sulfide, [1] primary and secondary amines. [2] This nonmetal electrophilic oxygen transfer agent is the reagent of choice for most epoxidation reactions (better than MCPBA) due to its substrate-induced selectivity, specificity, and reactivity under mild conditions (at 0-25 °C and neutral pH). It reacts rapidly and in high yield, is easy to handle and applicable to acid- or base-sensitive substrates, and it can be used to synthesize hydrolytically labile oxyfunctionalized products. [3-4]

DMD-mediated halogenations, [5a] hydroxylations, [5b] and oxidations are widely used in the chemistry of flavonoids, low-molecular-weight natural compounds and in expanding the organoborane chemistry. [6a] [b] It also acts as a G-specific chemical sequencing agent and is a new source of singlet oxygen generation. [7a,b]

    References

  • 1 Ishii A. Tsuchiya C. Shimada T. Furusawa K. Omata T. Nakayama J. J. Org. Chem.  2000,  65:  1799 
  • 2a Winkeljohn WR. Vasquez PC. Strekowski L. Baumstark A. Tetrahedron Lett.  2004,  45:  8295 
  • 2b Miaskiewicz K. Teich NA. Smith DA. J. Org. Chem.  1997,  62:  6493 
  • 3 Murray RW. Singh M. Org. Synth.  1998,  9:  288 
  • 4 D’Accolti L. Fusco C. Annese C. Rella MR. Turteltaub JS. Williard PG. Curci R. J. Org. Chem.  2004,  69:  8510 
  • 5a Bovicelli P. Mincione E. Antonioletti R. Bernini R. Colombari M. Synth. Commun.  2001,  31:  2955 
  • 5b Chu H.-W. Wu H.-T. Lee Y.-J. Tetrahedron  2004,  60:  2647 
  • 6a Ashavina OY. Kabalnova NN. Flekhter OB. Spirikhin LV. Galin FZ. Baltina LA. Starikova ZA. Antipin MY. Tolstikov GA. Mendeleev Commun.  2004,  5:  221 
  • 6b Molander GA. Ribagorad M. J. Am. Chem. Soc.  2003,  125:  11148 
  • 7a Davis RJH. Stevenson C. Kumar S. Lyle J. Cosby L. Malone JF. Boyd DR. Sharma ND. Hunter AP. Stein BK. Nucleosides, Nucleotide Nucleic Acids  2003,  22:  1355 
  • 7b Adam W. Kazakov DV. Kazakov VP. Kiefer W. Latypova RR. Schlucker S. Photochem. Photobiol. Sci.  2004,  3:  182 
  • 8 Koposov AY. Karimov RR. Geraskin IM. Nemykin VN. Zhdankin VV. J. Org. Chem.  2006,  71:  8452 
  • 9 Suarez-Castillo OR. Sanchez-Zavala M. Melendez-Rodriguez M. Castelan-Duarte LE. Morales-Rios MS. Joseph-Nathan P. Tetrahedron  2006,  62:  3040 
  • 10a Hoffmann-Röder A. Krause N. Synthesis  2006,  2143 
  • 10b Hayashi Y. Shoji M. Mukaiyama T. Gotoh H. Yamaguchi S. Nakata M. Kakeya H. Osada H. J. Org. Chem.  2005,  70:  5643 
  • 11a Cheshev P. Marra A. Dondoni A. Carbohydr. Res.  2006,  341:  2714 
  • 11b Ghosh P. Lotesta SD. Williams LJ. J. Am. Chem. Soc.  2007,  129:  2438 
  • 12a Ballini R. Petrini M. Tetrahedron  2004,  60:  1017 
  • 12b Makosza M. Surowiec M. Tetrahedron  2003,  59:  6261 
  • 12c Makosza M. Adam W. Zhao C.-G. Surowiec M. J. Org. Chem.  2001,  66:  5022