References and Notes
<A NAME="RU08107ST-1A">1a</A>
Guibé F.
Tetrahedron
1997,
53:
13509
<A NAME="RU08107ST-1B">1b</A>
Guibé F.
Tetrahedron
1998,
54:
2967
<A NAME="RU08107ST-2A">2a</A>
Hutchins RO.
Learn K.
J. Org. Chem.
1982,
47:
4380
<A NAME="RU08107ST-2B">2b</A>
Honda M.
Morita H.
Nagakura I.
J. Org. Chem.
1997,
62:
8932
<A NAME="RU08107ST-2C">2c</A>
Opatz T.
Kunz H.
Tetrahedron Lett.
2000,
41:
10185
<A NAME="RU08107ST-2D">2d</A>
Chandrasekhar S.
Reddy CR.
Rao RJ.
Tetrahedron
2001,
57:
3435
<A NAME="RU08107ST-2E">2e</A>
Vutukuri DR.
Bharathi P.
Yu Z.
Rajasekaran K.
Tran M.-H.
Thayumanavan S.
J. Org. Chem.
2003,
68:
1146
<A NAME="RU08107ST-2F">2f</A>
Tsukamoto H.
Kondo Y.
Synlett
2003,
1061
<A NAME="RU08107ST-2G">2g</A>
Tsukamoto H.
Suzuki T.
Kondo Y.
Synlett
2003,
1105
<A NAME="RU08107ST-3A">3a</A>
Kamal A.
Laxman E.
Rao NV.
Tetrahedron Lett.
1999,
40:
371
<A NAME="RU08107ST-3B">3b</A>
Bartoli G.
Cupone G.
Dalpozzo R.
De Nino A.
Maiuolo L.
Marcantoni E.
Procopio A.
Synlett
2001,
1897
<A NAME="RU08107ST-3C">3c</A>
Kitov PI.
Bundle DR.
Org. Lett.
2001,
3:
2835
<A NAME="RU08107ST-3D">3d</A>
Chen F.-E.
Ling X.-H.
He Y.-P.
Peng X.-H.
Synthesis
2001,
1772
<A NAME="RU08107ST-3E">3e</A>
Yang SG.
Park MY.
Kim YH.
Synlett
2002,
492
<A NAME="RU08107ST-3F">3f</A>
Ohkubo M.
Mochizuki S.
Sano T.
Kawaguchi Y.
Okamoto S.
Org. Lett.
2007,
9:
773
<A NAME="RU08107ST-3G">3g</A>
Bailey WF.
England MD.
Mealy MJ.
Thongsornkleeb C.
Teng L.
Org. Lett.
2000,
2:
489
<A NAME="RU08107ST-3H">3h</A>
Taniguchi T.
Ogasawara K.
Angew. Chem. Int. Ed.
1998,
37:
1136
<A NAME="RU08107ST-3I">3i</A>
Dahlen A.
Sundgren A.
Lahmann M.
Oscarson S.
Hilmersson C.
Org. Lett.
2003,
5:
4085
<A NAME="RU08107ST-3J">3j</A>
Thomas RM.
Mohan GH.
Iyengar DS.
Tetrahedron Lett.
1997,
38:
4721
<A NAME="RU08107ST-3K">3k</A>
Chary KP.
Mohan GH.
Iyengar DS.
Chem. Lett.
1999,
28:
1223
<A NAME="RU08107ST-3L">3l</A>
RajaRam S.
Chary KP.
Salahuddin S.
Iyengar DS.
Synth. Commun.
2002,
30:
133
<A NAME="RU08107ST-3M">3m</A>
Tanaka S.
Saburi H.
Ishibashi Y.
Kitamura M.
Org. Lett.
2004,
6:
1873
<A NAME="RU08107ST-3N">3n</A>
Tanaka S.
Saburi H.
Kitamura M.
Adv. Synth. Catal.
2006,
348:
375
<A NAME="RU08107ST-3O">3o</A>
Murakami H.
Minami T.
Ozawa F.
J. Org. Chem.
2004,
69:
4482
<A NAME="RU08107ST-4A">4a</A>
Bartnicka H.
Bojanowska I.
Kalinowski MK.
Aust. J. Chem.
1991,
44:
1077
<A NAME="RU08107ST-4B">4b</A>
Headly AD.
Starnes SD.
Wilson LY.
Famini GR.
J. Org. Chem.
1994,
59:
8040
<A NAME="RU08107ST-4C">4c</A>
Mollin J.
Pavelek Z.
Navrátilová J.
Recmanová A.
Coll. Czech. Chem. Commun.
1985,
50:
2670
<A NAME="RU08107ST-5">5</A> In this time, the deallylation of 2a in THF proceeded even at room temperature, but required 24 hours for its completion
(Table 1, entry 6). Use of Pd(PPh3)4 prepared according to the following literature procedure instead of commercially
available one might improve the reactivity:
Coulson DR.
Inorg. Synth.
1972,
13:
121
<A NAME="RU08107ST-6">6</A>
Representative Procedure for Deprotection of Allyl Ether: To a test tube containing 2a (0.13 mmol), 1a (0.27 mmol), and Pd(PPh3)4 (7 µmol) was added MeOH (0.4 mL) under argon. The resulting mixture was sealed with
a screw cap and agitated at r.t. for 1 h. The mixture was partitioned between EtOAc
and sat. aq Na2CO3 and the aqueous layer was extracted with EtOAc (2 ×). The combined organic layers
were washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was purified by silica gel chromatography
to yield the deallylated product 3a.
<A NAME="RU08107ST-7A">7a</A>
Jursic BS.
Neumann DM.
Tetrahedron Lett.
2001,
42:
4103
<A NAME="RU08107ST-7B">7b</A>
Jursic BS.
Stevens ED.
Tetrahedron Lett.
2003,
44:
2203
For sulfone-catalyzed selective and successive cleavage of prenyl and methallyl ethers
in the presence of allyl ethers, see:
<A NAME="RU08107ST-8A">8a</A>
Markovic D.
Vogel P.
Org. Lett.
2004,
6:
2693
<A NAME="RU08107ST-8B">8b</A>
Markovic D.
Steunenberg P.
Ekstrand M.
Vogel P.
Chem. Commun.
2004,
2444
For cleavage of prenyl ethers in the presence of allyl ethers, see:
<A NAME="RU08107ST-9A">9a</A>
Sharma GVM.
Ilangovan A.
Mahalingam AK.
J. Org. Chem.
1998,
63:
9103
<A NAME="RU08107ST-9B">9b</A>
Sharma GVM.
Reddy CG.
Krishna PR.
Synlett
2003,
1728
<A NAME="RU08107ST-9C">9c</A>
Tsuritani T.
Shinokubo H.
Oshima K.
Tetrahedron Lett.
1999,
40:
8121
<A NAME="RU08107ST-9D">9d</A>
Vatéle J.-M.
Synlett
2001,
1989
<A NAME="RU08107ST-9E">9e</A>
Vatéle J.-M.
Synlett
2002,
507
<A NAME="RU08107ST-9F">9f</A>
Vatéle J.-M.
Tetrahedron
2002,
58:
5689
<A NAME="RU08107ST-9G">9g</A>
Babu KS.
Raju BC.
Srinivas PV.
Rao JM.
Tetrahedron Lett.
2003,
44:
2525
<A NAME="RU08107ST-9H">9h</A>
Babu KS.
Raju BC.
Srinivas PV.
Rao AS.
Kumar SP.
Rao JM.
Chem. Lett.
2003,
32:
704
<A NAME="RU08107ST-10">10</A>
Characterization data for compounds 9-14.
4-Methoxyphenyl 3-O-Allyl-4-O-benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (9): 1H NMR (400 MHz, CDCl3): δ = 7.25-7.40 (m, 5 H), 6.99 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 8.8 Hz, 2 H), 5.93 (ddt, J = 5.6, 10.4, 17.2 Hz, 1 H), 5.33 (d, J = 17.2 Hz, 1 H), 5.27 (t, J = 6.8 Hz, 1 H), 5.18 (d, J = 10.4 Hz, 1 H), 5.01 (s, 1 H), 4.96 (d, J = 11.6 Hz, 1 H), 4.87 (s, 1 H), 4.77 (d, J = 7.6 Hz, 1 H), 4.67 (d, J = 11.6 Hz, 1 H), 4.33 (d, J = 12.0 Hz, 1 H), 4.23 (d, J = 12.0 Hz, 1 H), 4.19 (d, J = 5.6 Hz, 2 H), 3.82-3.95 (m, 4 H), 3.75 (s, 3 H), 3.51-3.61 (m, 3 H), 3.44 (dd,
J = 2.8, 9.6 Hz, 1 H), 1.78 (s, 3 H), 1.72 (s, 3 H), 1.62 (s, 3 H). 13C NMR (100 MHz, C6D6): δ = 155.8, 152.4, 143.3, 139.6, 136.2, 135.7, 128.5, 128.1, 127.6, 122.0, 119.2,
116.0, 114.9, 111.7, 103.9, 82.5, 79.3, 77.1, 75.2, 74.5, 74.0, 71.9, 68.5, 68.0,
55.2, 25.8, 19.9, 18.0. IR (neat): 2914, 2875, 1507, 1233, 1102, 1054, 1027, 822,
746 cm-1. MS (FAB): m/z = 538 [M]+. HRMS (FAB): m/z [M]+ calcd for C32H42O7: 538.2928; found: 538.2916.
4-Methoxyphenyl 4-O-Benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (10): 1H NMR (600 MHz, CDCl3): δ = 7.39 (d, J = 7.2 Hz, 2 H), 7.35 (dd, J = 7.2, 7.2 Hz, 2 H), 7.30 (t, J = 7.2 Hz, 1 H), 6.99 (d, J = 9.0 Hz, 2 H), 6.80 (d, J = 9.0 Hz, 2 H), 5.29 (t, J = 6.3 Hz, 1 H), 5.01 (s, 1 H), 4.89 (s, 1 H), 4.85 (d, J = 11.7 Hz, 1 H), 4.77 (d, J = 7.2 Hz, 1 H), 4.75 (d, J = 11.7 Hz, 1 H), 4.40 (d, J = 12.0 Hz, 1 H), 4.18 (d, J = 12.0 Hz, 1 H), 3.96 (dd, J = 7.2, 11.4 Hz, 1 H), 3.88-3.92 (m, 2 H), 3.76 (s, 3 H), 3.68-3.71 (m, 3 H), 3.56-3.63
(m, 2 H), 2.39-2.43 (br s, 1 H), 1.77 (s, 3 H), 1.72 (s, 3 H), 1.63 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 155.2, 151.5, 142.4, 138.5, 137.5, 128.4, 128.1, 127.8, 120.7, 118.3, 114.5,
112.5, 102.8, 79.6, 76.7, 75.5, 75.1, 74.1, 73.9, 68.2, 67.8, 55.6, 25.8, 19.7, 18.0.
IR (neat): 3300-3600 (br), 2914, 2865, 1507, 1453, 1378, 1214, 1061, 826, 747 cm-1. MS (EI): m/z (%) = 498 [M]+ (0.45), 430 (0.36), 374 (1.9), 307 (5.6), 262 (2.6), 214 (5.3), 192 (15), 145 (15),
124 (100), 91 (94). HRMS (EI): m/z [M]+ calcd for C29H38O7: 498.2615; found: 498.2616.
4-Methoxyphenyl 3-O-Benzoyl-4-O-benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (11): 1H NMR (400 MHz, CDCl3): δ = 8.04 (dd, J = 1.2, 8.0 Hz, 2 H), 7.56 (tt, J = 1.2, 8.0 Hz, 1 H), 7.43 (dd, J = 8.0, 8.0 Hz, 2 H), 7.20-7.30 (m, 5 H), 7.03 (d, J = 9.2 Hz, 2 H), 6.81 (d, J = 9.2 Hz, 2 H), 5.24 (t, J = 6.8 Hz, 1 H), 5.24 (dd, J = 3.4, 10.2 Hz, 1 H), 4.92 (d, J = 7.6 Hz, 1 H), 4.89 (s, 1 H), 4.76 (s, 1 H), 4.72 (d, J = 11.8 Hz, 1 H), 4.58 (d, J = 11.8 Hz, 1 H), 4.31 (d, J = 11.6 Hz, 1 H), 4.13 (dd, J = <1.0, 3.4 Hz, 1 H), 4.12 (d, J = 11.6 Hz, 1 H), 4.08 (dd, J = 7.6, 10.2 Hz, 1 H), 3.95 (dd, J = 6.8, 11.4 Hz, 1 H), 3.88 (dd, J = 6.8, 11.4 Hz, 1 H), 3.82 (ddd, J = <1.0, 6.8, 6.8 Hz, 1 H), 3.76 (s, 3 H), 3.56-3.64 (m, 2 H), 1.72 (s, 3 H), 1.62
(s, 3 H), 1.58 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.6, 155.1, 151.4, 142.1, 137.9, 137.2, 133.1, 129.7, 129.7, 128.3, 128.1,
127.9, 127.5, 120.7, 118.4, 114.4, 112.6, 103.0, 77.0, 76.8, 75.7, 75.0, 74.3, 73.5,
67.9, 67.8, 55.6, 25.8, 19.6, 18.1. IR (neat): 2931, 2867, 1719, 1507, 1451, 1270,
1216, 1067, 903, 826, 749, 710 cm-1. MS (EI): m/z (%) = 602 [M]+ (1.3), 479 (8.7), 411 (21), 393 (5.7), 339 (6.2), 303 (4.6), 249 (20), 214 (15),
192 (18), 149 (22), 91 (100). HRMS (EI): m/z [M]+ calcd for C36H42O8: 602.2877; found: 602.2867.
4-Methoxyphenyl 3-O-Benzoyl-4-O-benzyl-6-O-prenyl-β-d-galactopyranoside (12): 1H NMR (400 MHz, CDCl3): δ = 8.05 (dd, J = 1.2, 8.0 Hz, 2 H), 7.56 (tt, J = 1.2, 8.0 Hz, 1 H), 7.42 (dd, J = 8.0, 8.0 Hz, 1 H), 7.20-7.30 (m, 5 H), 7.03 (d, J = 9.2 Hz, 2 H), 6.80 (d, J = 9.2 Hz, 2 H), 5.28 (t, J = 6.8 Hz, 1 H), 5.22 (dd, J = 3.2, 10.4 Hz, 1 H), 4.86 (d, J = 8.0 Hz, 1 H), 4.73 (d, J = 11.6 Hz, 1 H), 4.59 (d, J = 11.6 Hz, 1 H), 4.35 (dd, J = 8.0, 10.4 Hz, 1 H), 4.15 (dd, J = <1.0, 3.2 Hz, 1 H), 3.96 (dd, J = 7.2, 11.6 Hz, 1 H), 3.88 (dd, J = 7.2, 11.6 Hz, 1 H), 3.85 (ddd, J = <1.0, 7.2, 7.2 Hz, 1 H), 3.76 (s, 3 H), 3.56-3.65 (m, 2 H), 2.49-2.55 (br s, 1
H), 1.72 (s, 3 H), 1.62 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.0, 155.3, 151.1, 137.9, 137.3, 133.2, 129.8, 129.5, 128.4, 128.1, 127.8,
127.6, 120.6, 118.5, 114.4, 102.6, 75.8, 75.1, 74.2, 73.8, 69.7, 67.8, 67.8, 55.6,
25.8, 18.1. IR (neat): 3250-3600(br), 2912, 2836, 1717, 1507, 1451, 1273, 1216, 1065,
1027, 827, 748, 712 cm-1. MS (EI): m/z (%) = 548 [M]+ (0.34), 425 (8.5), 357 (34), 249 (4.0), 214 (11), 192 (13), 124 (100), 91 (97). HRMS
(EI): m/z [M]+ calcd for C32H36O8: 548.2410; found: 548.2411.
4-Methoxyphenyl 2-O-Acetyl-3-O-benzoyl-4-O-benzyl-6-O-prenyl-β-d-galactopyranoside (13): 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 7.8 Hz, 2 H), 7.57 (t, J = 7.8 Hz, 1 H), 7.43 (dd, J = 7.8, 7.8 Hz, 2 H), 7.16-7.28 (m, 5 H), 6.98 (d, J = 9.0 Hz, 2 H), 6.80 (d, J = 9.0 Hz, 2 H), 5.79 (dd, J = 7.6, 10.4 Hz, 1 H), 5.29 (t, J = 6.8 Hz, 1 H), 5.21 (dd, J = 3.2, 10.4 Hz, 1 H), 4.98 (d, J = 7.6 Hz, 1 H), 4.71 (d, J = 11.6 Hz, 1 H), 4.56 (d, J = 11.6 Hz, 1 H), 4.20 (dd, J = <1.0, 3.2 Hz, 1 H), 3.96 (dd, J = 7.2, 11.6 Hz, 1 H), 3.89 (dd, J = 7.2, 11.6 Hz, 1 H), 3.87 (ddd, J = 1.0, 7.2, 7.2 Hz, 1 H), 3.76 (s, 3 H), 3.58-3.66 (m, 2 H), 1.98 (s, 3 H), 1.72
(s, 3 H), 1.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.3, 165.7, 155.3, 151.2, 137.7, 137.3, 133.4, 129.8, 129.0, 128.5, 128.1,
127.9, 127.5, 120.6, 118.5, 114.4, 100.8, 75.0, 74.5, 73.8, 73.8, 69.5, 67.8, 67.7,
55.6, 25.8, 20.8, 18.0. IR (neat): 2935, 2869, 1752, 1719, 1507, 1272, 1212, 1067,
1027, 828, 749, 714 cm-1. MS (EI): m/z (%) = 590 [M]+ (0.26), 467 (3.7), 399 (54), 339 (5.0), 277 (30), 249 (27), 175 (8.5), 124 (30),
91 (100). HRMS (EI): m/z [M]+ calcd for C34H38O9: 590.2516; found: 590.2518.
4-Methoxyphenyl 2-O-Acetyl-3-O-benzoyl-4-O-benzyl-β-d-galactopyranoside (14): 1H NMR (400 MHz, CDCl3): δ = 8.05 (dd, J = 1.2, 8.0 Hz, 2 H), 7.60 (tt, J = 1.2, 8.0 Hz, 1 H), 7.47 (dd, J = 8.0, 8.0 Hz, 2 H), 7.23-7.26 (m, 5 H), 6.96 (d, J = 9.2 Hz, 2 H), 6.81 (d, J = 9.2 Hz, 2 H), 5.81 (dd, J = 8.0, 10.4 Hz, 1 H), 5.22 (dd, J = 2.8, 10.4 Hz, 1 H), 5.01 (d, J = 8.0 Hz, 1 H), 4.76 (d, J = 11.6 Hz, 1 H), 4.48 (d, J = 11.6 Hz, 1 H), 4.13 (dd, J = <1.0, 2.8 Hz, 1 H), 3.84-3.90 (m, 1 H), 3.73-3.78 (m, 4 H), 3.55-3.62 (m, 1 H),
2.00 (s, 3 H), 1.58-1.65 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 169.4, 165.8, 155.3, 151.0, 137.1, 133.6, 129.8, 128.9, 128.6, 128.4, 128.3,
128.0, 118.3, 114.5, 100.5, 75.2, 72.7, 74.6, 73.1, 69.4, 61.6, 55.6, 20.8. IR (neat):
3350-3600 (br), 2935, 2883, 1752, 1719, 1507, 1272, 1212, 1069, 1027, 828, 749, 698
cm-1. MS (EI): m/z (%) = 522 [M]+ (0.35), 399 (22), 339 (3.0), 277 (9.5), 249 (18), 217 (3.5), 175 (8.5), 124 (25),
91 (100). HRMS (EI): m/z [M]+ calcd for C29H30O9: 522.189; found: 522.1868.
<A NAME="RU08107ST-11A">11a</A>
Wunberg T.
Kallus C.
Opatz T.
Henke S.
Schmidt W.
Kunz H.
Angew. Chem. Int. Ed.
1998,
37:
2503
<A NAME="RU08107ST-11B">11b</A>
Kallus C.
Opatz T.
Wunberg T.
Schmidt W.
Henke S.
Kunz H.
Tetrahedron Lett.
1999,
40:
7783
<A NAME="RU08107ST-12">12</A>
Frost CG.
Howarth J.
Williams JMJ.
Tetrahedron: Asymmetry
1992,
3:
1089
<A NAME="RU08107ST-13A">13a</A>
Sakaki S.
Nishikawa M.
Ohyoshi A.
J. Am. Chem. Soc.
1980,
102:
4062
<A NAME="RU08107ST-13B">13b</A>
Åkermark B.
Zetterberg K.
Hansson S.
Krakenberger B.
Vitagliano A.
J. Organomet. Chem.
1987,
335:
133
<A NAME="RU08107ST-13C">13c</A>
Åkermark B.
Krakenberger B.
Hansson S.
Vitagliano A.
Organometallics
1987,
6:
620
<A NAME="RU08107ST-13D">13d</A>
Szabó KJ.
Organometallics
1996,
15:
1128
<A NAME="RU08107ST-13E">13e</A>
Szabó KJ.
J. Am. Chem. Soc.
1996,
118:
7818
<A NAME="RU08107ST-13F">13f</A>
Ross J.
Chen W.
Xu L.
Xiao J.
Organometallics
2001,
20:
138
For Pd(0)-catalyzed direct allylation of 1,3-dicarbonyl compounds with allyl alcohols
in aqueous media, see:
<A NAME="RU08107ST-14A">14a</A>
Manabe K.
Kobayashi S.
Org. Lett.
2003,
5:
3241
<A NAME="RU08107ST-14B">14b</A>
Kinoshita H.
Shiokubo H.
Oshima K.
Org. Lett.
2004,
6:
4085
<A NAME="RU08107ST-14C">14c</A>
Kinoshita H.
Shiokubo H.
Oshima K.
Angew. Chem. Int. Ed.
2005,
44:
2097
For Pd(0)-catalyzed direct allylation of 1,3-dicarbonyl compounds with allylic alcohols
in nonaqueous media, see:
<A NAME="RU08107ST-15A">15a</A>
Tamaru Y.
Horino Y.
Araki M.
Tanaka S.
Kimura M.
Tetrahedron Lett.
2000,
41:
5705
<A NAME="RU08107ST-15B">15b</A>
Kimura M.
Mukai R.
Tanigawa N.
Tanaka S.
Tamaru Y.
Tetrahedron
2003,
59:
7767
<A NAME="RU08107ST-15C">15c</A>
Ozawa F.
Okamoto H.
Kawagishi S.
Yamamoto S.
Minami T.
Yoshifuji M.
J. Am. Chem. Soc.
2002,
124:
10968
<A NAME="RU08107ST-15D">15d</A>
Ozawa F.
Ishiyama T.
Yamamoto S.
Kawagishi S.
Murakami H.
Yoshifuji M.
Organometallics
2004,
23:
1698
<A NAME="RU08107ST-15E">15e</A>
Kayaki Y.
Koda T.
Ikariya T.
J. Org. Chem.
2004,
69:
4989
<A NAME="RU08107ST-15F">15f</A>
Hou R.-S.
Wang H.-M.
Huang H.-Y.
Chen L.-C.
Heterocycles
2005,
65:
1917
<A NAME="RU08107ST-15G">15g</A>
Patil NT.
Yamamoto Y.
Tetrahedron Lett.
2004,
45:
3101
<A NAME="RU08107ST-15H">15h</A>
Yang S.-C.
Hsu Y.-C.
Gan K.-H.
Tetrahedron
2006,
62:
3949
The following reports also suggested that alcoholic solvents would promote the oxidative
addition to Pd(0) catalyst:
<A NAME="RU08107ST-16A">16a</A>
Tsukamoto H.
Suzuki R.
Kondo Y.
J. Comb. Chem.
2006,
8:
289
<A NAME="RU08107ST-16B">16b</A>
Yokogi M.
Kuwano R.
Tetrahedron Lett.
2007,
48:
6109
<A NAME="RU08107ST-17">17</A>
There are a few reports on carboxylic acids promoted Tsuji-Trost reaction.14a,15g,h In our systems, barbituric acids play dual roles as acids and nucleophiles.
<A NAME="RU08107ST-18">18</A>
Less acidic acyclic 1,3-dicarbonyl compounds did not scavenge the allyl group of 2a in aqueous 1,4-dioxane at room temperature. This result is quite different from the
aqueous biphasic Tsuji-Trost reaction developed by Shinokubo and Oshima.14b Our system does not require biphasic systems, water-soluble TPPTS [trisodium salt
of tri(m-sulfophenyl)phosphine] as a ligand, and additional base.