Synlett 2008(1): 147-148  
DOI: 10.1055/s-2007-990914
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

MacMillan’s Imidazolidinones: Powerful Chiral Organocatalysts

Thomas Poisson*
Laboratoire de Chimie Organique Fine et Hétérocyclique UMR 6014 IRCOF, Université et INSA de Rouen, BP 08, 76131 Mont Saint Aignan Cedex, France
e-Mail: thomas.poisson@insa-rouen.fr;
Further Information

Publication History

Publication Date:
11 December 2007 (online)

Introduction

During the last seven years, many research groups have developed the concept of iminium activation. The advantage of this approach is that the iminium generated in situ by equilibrium between an α,β-unsaturated carbonyl compound (ketone or aldehyde) and a secondary amine salt can replace the traditional use of Lewis acid to lower the LUMO of the electrophile (Figure [1] ). [1]

Figure 1 Lewis acid activation vs iminium activation

A small collection of chiral imidazolidinone salts have been shown to be widely efficient for a broad range of asymmetric transformations such as Friedel-Crafts alkylation, [2] Diels-Alder cycloaddition, [3] hydrogenation of α,β-unsaturated carbonyl compounds [4] and cascade catalysis. [5]

Furthermore, these chiral imidazolidinones can be used for the classical enamine activation of ketone or aldehyde [6] in aldol or addition reactions. [5]

This concept first reported by MacMillan [3] is now an efficient tool in organocatalysis. [7] Indeed, this reagent is a good alternative to toxic, hazardous and expensive metals.

Numerous catalysts are commercially available (Figure [2] ), or can be easily prepared from inexpensive natural amino acids. [3]

Moreover, it has been recently reported that the commercially available chiral amine salts derived from these imidazolidinones can be used for iminium activation in total synthesis, demonstrating that this concept can be applied to the preparation of complex target molecules. [8]

Figure 2 Commercially available chiral imidazolidinone catalysts

    References

  • 1 Kagan HB. Riant O. Chem. Rev.  1992,  92:  1007 
  • 2 Paras NA. MacMillan DWC. J. Am. Chem. Soc.  2001,  123:  4370 
  • 3 Ahrendt KA. Borths CJ. MacMillan DWC. J. Am. Chem. Soc.  2000,  122:  4243 
  • 4 Yang J W. Hechavarria FonsecaMT. Vignola N. List B. Angew. Chem. Int. Ed.  2005,  44:  108 
  • 5 Huang Y. Walji AM. Larsen CH. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  15051 
  • 6a List B. Chem. Commun.  2006,  819 
  • 6b List B. Acc. Chem. Res.  2004,  37:  548 
  • 6c Marigo M. Jørgensen KA. Chem. Commun.  2006,  2001 
  • 7a Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 7b Berkessel A. Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis   Wiley-VCH; Weinheim: 2005. 
  • 8a Kinsman AC. Kerr MA. J. Am. Chem. Soc.  2003,  125:  14120 
  • 8b Robichaud J. Tremblay F. Org. Lett.  2006,  8:  597 
  • 8c King HD. Meng Z. Denhart D. Mattson R. Kimura R. Wu D. Qi G. Macor JE. Org. Lett.  2005,  7:  3437 
  • 9 Wilson RM. Jen WS. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  11616 
  • 10 Fredrickson F. Tetrahedron  1997,  53:  403 
  • 11 Jen WS. Wiener JJM. MacMillan DWC. J. Am. Chem. Soc.  2000,  122:  9874 
  • 12 Hechavarria Fonseca M. T. List B. Angew. Chem. Int. Ed.  2004,  43:  3958 
  • 13a Austin JF. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  1172 
  • 13b Paras NA. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  7894 
  • 13c Brown SP. Goodwin NC. MacMillan DWC. J. Am. Chem. Soc.  2003,  125:  1192 
  • 14a Pederson RL. Fellows IM. Ung TA. Ishihara H. Hajela SP. Adv. Synth. Catal.  2002,  344:  728 
  • 14b Kim SG. Kim J. Jung H. Tetrahedron Lett.  2005,  46:  2437 
  • 15a Beeson T. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  8826 
  • 15b Brochu MP. Brown SP. MacMillan DWC. J. Am. Chem. Soc.  2004,  126:  4108