References and Notes
<A NAME="RD23607ST-1">1</A>
Couty S.
Meyer C.
Cossy J.
Angew. Chem. Int. Ed.
2006,
45:
6726
For the platinum-catalyzed cycloisomerization of ene-ynamides, see:
<A NAME="RD23607ST-2A">2a</A>
Marion F.
Coulomb J.
Courillon C.
Fensterbank L.
Malacria M.
Org. Lett.
2004,
6:
1509
<A NAME="RD23607ST-2B">2b</A>
Marion J.
Coulomb J.
Servais A.
Courillon C.
Fensterbank L.
Malacria M.
Tetrahedron
2006,
62:
3856
<A NAME="RD23607ST-3">3</A>
Mamane V.
Gress T.
Krause H.
Fürstner A.
J. Am. Chem. Soc.
2004,
126:
8654
<A NAME="RD23607ST-4">4</A> For a review on gold-catalyzed reactions, see:
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RD23607ST-5">5</A>
Nieto-Oberhuber C.
López S.
Jiménez-Núñez E.
Echavarren AM.
Chem. Eur. J.
2006,
12:
5916 ; and references therein
<A NAME="RD23607ST-6A">6a</A>
Lewars EG.
Chem. Rev.
1983,
83:
519
<A NAME="RD23607ST-6B">6b</A>
Delamere C.
Jakins C.
Lewars E.
Can. J. Chem.
2002,
80:
94
<A NAME="RD23607ST-7">7</A>
Stille JK.
Whitehurst DD.
J. Am. Chem. Soc.
1964,
86:
4871
<A NAME="RD23607ST-8">8</A>
Curci R.
Fiorentino M.
Fusco C.
Mello R.
Ballistreri FP.
Failla S.
Tomaselli GA.
Tetrahedron Lett.
1992,
33:
7929
<A NAME="RD23607ST-9">9</A>
Murray RW.
Singh M.
J. Org. Chem.
1993,
58:
5076
<A NAME="RD23607ST-10">10</A> Epoxidation of coordinated alkynes generate α-ketocarbene complexes, see:
Sun S.
Edwards JO.
Sweigart DA.
D’Accolti L.
Curci R.
Organometallics
1995,
14:
1545
<A NAME="RD23607ST-11">11</A>
Zeller K.-P.
Kowallik M.
Haiss P.
Org. Biomol. Chem.
2005,
3:
2310
<A NAME="RD23607ST-12">12</A>
Dayan S.
Ben-David I.
Rozen S.
J. Org. Chem.
2000,
65:
8816
<A NAME="RD23607ST-13">13</A> Oxidation of terminal alkynes with Oxone catalyzed by a Mn-porphyrin in the presence
of primary amines as the ketene trap affords amides, see:
Chan W.-K.
Ho C.-M.
Wong M.-K.
Che C.-M.
J. Am. Chem. Soc.
2006,
128:
14796
<A NAME="RD23607ST-14">14</A> The α-oxocarbenes generated from cyclic α-diazoketones preferentially rearrange
to α,β-unsaturated ketones or undergo Wolff rearrangement rather than transannular
C-H insertions, see:
Ciabattoni J.
Campbell RA.
Renner CA.
Concannon PW.
J. Am. Chem. Soc.
1970,
92:
3826
For the epoxidations of enamides, see:
<A NAME="RD23607ST-15A">15a</A>
Xiong H.
Hsung RP.
Shen L.
Hahn JM.
Tetrahedron Lett.
2002,
43:
4449
<A NAME="RD23607ST-15B">15b</A>
Adam W.
Bosio SG.
Wolff BT.
Org. Lett.
2003,
5:
819
<A NAME="RD23607ST-15C">15c</A>
Davies SG.
Key M.-S.
Rodriguez-Solla H.
Sanganee HJ.
Savory ED.
Smith AD.
Synlett
2003,
1659
For the epoxidation of allenamides, see:
<A NAME="RD23607ST-16A">16a</A>
Xiong H.
Hsung RP.
Berry CR.
Rameshkumar C.
J. Am. Chem. Soc.
2001,
123:
7174
<A NAME="RD23607ST-16B">16b</A>
Rameshkumar C.
Xiong H.
Tracey MR.
Berry CR.
Yao LJ.
Hsung RP.
J. Org. Chem.
2002,
67:
1339
<A NAME="RD23607ST-17">17</A>
Yang D.
Wong M.-K.
Yip Y.-C.
J. Org. Chem.
1995,
60:
3887.
<A NAME="RD23607ST-18">18</A>
Adam W.
Bialas J.
Hadjiarapoglou L.
Chem. Ber.
1991,
124:
2377
<A NAME="RD23607ST-19">19</A>
For a special issue devoted to the chemistry of ynamides, see: Tetrahedron 2006, 62, issue 16.
<A NAME="RD23607ST-20A">20a</A>
Sharpless KB.
Michaelson RC.
J. Am. Chem. Soc.
1973,
95:
6136
<A NAME="RD23607ST-20B">20b</A>
Sharpless KB.
Verhoeven TR.
Aldrichimica Acta
1979,
12:
63
<A NAME="RD23607ST-21A">21a</A> The vanadium-catalyzed epoxidation of α- and β-allenyl alcohols has been descibed,
see:
Kim SJ.
Cha JK.
Tetrahedron Lett.
1988,
29:
5613
<A NAME="RD23607ST-21B">21b</A> Kinetic resolutions of α-allenyl and propargylic alcohols have also been attempted,
see:
Sharpless KB.
Behrens CH.
Katsuki T.
Lee AWM.
Martin VS.
Takatani M.
Viti SM.
Walker FJ.
Woodard SS.
Pure Appl. Chem.
1983,
55:
589
<A NAME="RD23607ST-22">22</A>
Representative Procedure: 2-Hydroxy-1-{(1
S
*,5
R*
)-2-(4-methylbenzenesulfonyl)-2-azabicyclo[3.1.0]hex-1-yl}ethanone (10)
To a solution of ynamide 9 (136 mg, 0.486 mmol) in CH2Cl2 (5 mL) at 0 °C were successively added VO(acac)2 (6.4 mg, 0.024 mmol, 0.05 equiv) and TBHP (0.220 mL, 5.5M in decane, 1.21 mmol, 2.5
equiv). After 0.5 h at r.t., the reaction mixture was cooled to 0 °C and cautiously
hydrolyzed with a 25% aqueous solution of Na2S2O3. After extraction with CH2Cl2, the combined organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude material was purified
by flash chromatography (PE-EtOAc, 55:45) to afford 52 mg (40%) of 10 as a colorless oil. IR: 3475, 1701, 1339, 1160, 1086, 903, 808, 666 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2 H), 7.34 (d, J = 8.5 Hz, 2 H), 5.24 (d, AB syst, J = 19.1 Hz, 1 H), 4.56 (d, AB syst, J = 19.1 Hz, 1 H), 3.70 (ddd, J = 10.6, 9.0, 2.5 Hz, 1 H), 3.03 (br s, 1 H, OH), 2.81 (ddd, app td, J = 10.6, 9.5 Hz, 1 H), 2.45 (s, 3 H), 2.27-2.15 (m, 1 H), 1.92-1.83 (m, 3 H), 0.62
(dd, app t, J = 4.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 206.3 (s), 144.8 (s), 131.9 (s), 129.7 (d, 2 C), 128.9 (d, 2 C), 67.1 (t),
53.9 (s), 49.6 (t), 34.2 (d), 25.8 (t), 21.6 (q), 16.8 (t). MS (EI, 70 eV): m/z (%) = 295 (4)[M+], 293 (7), 264 (9), 155 (15), 141 (10), 140 (100), 139 (11), 92 (19), 91 (82), 89
(8), 82 (74), 80 (8), 65 (29), 55 (86), 54 (11), 53 (10). Anal. Calcd for C14H17NO4S: C, 56.93; H, 5.80; N, 4.74. Found: C, 56.88; H, 5.93; N, 4.61.
<A NAME="RD23607ST-23">23</A>
Zhang Y.
Hsung RP.
Tracey MR.
Kurtz KCM.
Vera EL.
Org. Lett.
2004,
6:
1151
<A NAME="RD23607ST-24">24</A>
Batey RA.
Thadani AN.
Org. Lett.
2002,
4:
3827
<A NAME="RD23607ST-25A">25a</A>
Martin SF.
Spaller MR.
Liras S.
Hartmann B.
J. Am. Chem. Soc.
1994,
116:
4493
<A NAME="RD23607ST-25B">25b</A>
Lautens M.
Meyer C.
Van Oeveren A.
Tetrahedron Lett.
1997,
38:
3833
<A NAME="RD23607ST-25C">25c</A>
Cossy J.
Blanchard N.
Meyer C.
Eur. J. Org. Chem.
2001,
339