References and Notes
<A NAME="RU06807ST-1A">1a</A> For reviews, see:
Yamaguchi S.
Tamao K.
J. Chem. Soc., Dalton Trans.
1998,
3693
<A NAME="RU06807ST-1B">1b</A>
Yamaguchi S.
Tamao K.
J. Organomet. Chem.
2002,
653:
223
<A NAME="RU06807ST-2">2</A>
Yamaguchi S.
Tamao K.
Chem. Lett.
2005,
34:
2
<A NAME="RU06807ST-3A">3a</A>
Tamao K.
Uchida M.
Izumizawa T.
Furukawa K.
Yamaguchi S.
J. Am. Chem. Soc.
1996,
118:
11974
<A NAME="RU06807ST-3B">3b</A>
Yamaguchi S.
Endo T.
Uchida M.
Izumizawa T.
Furukawa K.
Tamao K.
Chem. Eur. J.
2000,
6:
1683
<A NAME="RU06807ST-3C">3c</A>
Luo J.
Xie Z.
Lam JWY.
Cheng L.
Chen H.
Qiu C.
Kwok HS.
Zhan X.
Liu Y.
Zhu D.
Tang BZ.
Chem. Commun.
2001,
1740
<A NAME="RU06807ST-3D">3d</A>
Chen J.
Law CC.
Lam JWY.
Dong Y.
Lo SMF.
Williams ID.
Zhu D.
Tang BZ.
Chem. Mater.
2003,
15:
1535
<A NAME="RU06807ST-3E">3e</A>
Chen J.
Xie Z.
Lam JWY.
Law CCW.
Tang BZ.
Macromolecules
2003,
36:
1108
<A NAME="RU06807ST-3F">3f</A>
Lee J.
Liu Q.-D.
Motala M.
Dane J.
Gao J.
Kang Y.
Wang S.
Chem. Mater.
2004,
16:
1869
<A NAME="RU06807ST-3G">3g</A>
Lee J.
Liu Q.-D.
Bai D.-R.
Kang Y.
Tao Y.
Wang S.
Organometallics
2004,
23:
6205
<A NAME="RU06807ST-4A">4a</A>
Xu G.
Wakamiya A.
Yamaguchi S.
J. Am. Chem. Soc.
2005,
127:
1638
<A NAME="RU06807ST-4B">4b</A>
Mouri K.
Wakamiya A.
Yamada H.
Kajiwara T.
Yamaguchi S.
Org. Lett.
2007,
9:
93
<A NAME="RU06807ST-5A">5a</A>
Boydston AJ.
Yin Y.
Pagenkopf BL.
J. Am. Chem. Soc.
2004,
126:
10350
<A NAME="RU06807ST-5B">5b</A>
Boydston AJ.
Pagenkopf BL.
Angew. Chem. Int. Ed.
2004,
43:
6336
<A NAME="RU06807ST-6A">6a</A>
Otera J.
Pure Appl. Chem.
2006,
78:
731
<A NAME="RU06807ST-6B">6b</A>
Orita A.
Otera J.
Chem. Rev.
2006,
106:
5387
For one-pot double elimination protocols, see:
<A NAME="RU06807ST-6C">6c</A>
Orita A.
Nakano T.
Yokoyama T.
Babu G.
Otera J.
Chem. Lett.
2004,
33:
1298
<A NAME="RU06807ST-6D">6d</A>
Orita A.
Miyamoto K.
Nakashima M.
Ye F.
Otera J.
Adv. Synth. Catal.
2004,
346:
767
<A NAME="RU06807ST-6E">6e</A>
Ye F.
Orita A.
Yaruva J.
Hamada T.
Otera J.
Chem. Lett.
2004,
33:
528
<A NAME="RU06807ST-6F">6f</A>
Ye F.
Orita A.
Doumoto A.
Otera J.
Tetrahedron
2003,
59:
5635
<A NAME="RU06807ST-6G">6g</A>
Orita A.
Ye F.
Doumoto A.
Otera J.
Chem. Lett.
2003,
32:
104
<A NAME="RU06807ST-6H">6h</A>
Orita A.
An D.-L.
Nakano T.
Yaruva J.
Ma N.
Otera J.
Chem. Eur. J.
2002,
8:
2005
<A NAME="RU06807ST-6I">6i</A>
Orita A.
Hasegawa D.
Nakano T.
Otera J.
Chem. Eur. J.
2002,
8:
2000
<A NAME="RU06807ST-6J">6j</A>
Orita A.
Alonso E.
Yaruva J.
Otera J.
Synlett
2000,
1333
<A NAME="RU06807ST-6K">6k</A>
Orita A.
Yoshioka N.
Struwe P.
Braier A.
Beckmann A.
Otera J.
Chem. Eur. J.
1999,
5:
1355
For one-shot double elimination protocols, see:
<A NAME="RU06807ST-6L">6l</A>
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Gleiter R.
Otera J.
Chem. Asian J.
2007,
2:
489
<A NAME="RU06807ST-6M">6m</A>
Orita A.
Taniguchi H.
Otera J.
Chem. Asian J.
2006,
1:
430
<A NAME="RU06807ST-7A">7a</A>
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Otera J.
Chem. Lett.
2006,
35:
1284
<A NAME="RU06807ST-7B">7b</A>
Oyamada T.
Shao G.
Uchiuzou H.
Nakanotani H.
Orita A.
Otera J.
Yahiro M.
Adachi C.
Jpn. J. Appl. Phys.
2006,
45:
L1331
<A NAME="RU06807ST-7C">7c</A>
Shao G.
Orita A.
Taniguchi H.
Ishimaru K.
Otera J.
Synlett
2007,
231
<A NAME="RU06807ST-7D">7d</A>
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Gleiter R.
Otera J.
Chem. Asian J.
2007,
2:
489
<A NAME="RU06807ST-7E">7e</A>
Fenenko L.
Shao G.
Orita A.
Yahiro M.
Otera J.
Svechnikov S.
Adachi C.
Chem. Commun.
2007,
2278
For example:
<A NAME="RU06807ST-8A">8a</A>
Anderson S.
Chem. Eur. J.
2001,
7:
4706
<A NAME="RU06807ST-8B">8b</A>
Yamaguchi Y.
Tanaka T.
Kobayashi S.
Wakamiya T.
Matsubara Y.
Yoshida Z.
J. Am. Chem. Soc.
2005,
127:
9332
<A NAME="RU06807ST-8C">8c</A>
Yamaguchi Y.
Kobayashi S.
Wakamiya T.
Matsubara Y.
Yoshida Z.
Angew. Chem. Int. Ed.
2005,
44:
7040
<A NAME="RU06807ST-8D">8d</A>
Yamaguchi Y.
Ochi T.
Wakamiya T.
Matsubara Y.
Yoshida Z.
Org. Lett.
2006,
8:
717
<A NAME="RU06807ST-8E">8e</A>
Shi Z.-F.
Wang L.-J.
Wang H.
Cao X.-P.
Zhang H.-L.
Org. Lett.
2007,
9:
595
<A NAME="RU06807ST-9">9</A>
UV-Vis and photofluorescence were recorded with JASCO V-560 and JASCO FP-6500 instruments
at r.t., respectively. Absolute quantum yields of photofluorescence were recorded
by an integration sphere system (Hamamatsu photonics C9920-02).
<A NAME="RU06807ST-10">10</A>
Tamao K.
Yamaguchi S.
Shiro M.
J. Am. Chem. Soc.
1994,
116:
11715
<A NAME="RU06807ST-11">11</A>
Representative Experimental Procedure:
(i) Preparation of 3e: To a THF solution (40 mL) of phenyl 4-(trimethylsilylethynyl)phenylmethyl sulfone
(1.57 g, 4.8 mmol) was added LiHMDS (4.8 mL, 1.0 M THF solution, 4.8 mmol) at -78
°C, and the mixture was stirred for 0.5 h. To this solution was added a THF solution
(5 mL) of 2,5-diethyl-4-(4-methoxyphenylethynyl)benzaldehyde (1.16 g, 4.0 mmol), and
the mixture was stirred for 1 h. After ClP(O)(OEt)2 (0.694 mL, 4.8 mmol) had been added, the mixture was stirred at r.t. for 2 h. After
LiHMDS (20.0 mL, 1.0 M THF solution, 20.0 mmol) had been added at -78 °C, the reaction
mixture was stirred at -78 °C for 1 h and then at 30 °C for 17 h. After usual workup
with EtOAc and aq NH4Cl, the organic layer was dried over MgSO4 and filtered. The solvents were evaporated, and the residue was chromatographed (CH2Cl2-hexane, 3:7) to give 3e (1.73 g, 94%) as a colorless solid. 1H NMR (500 MHz, CDCl3): δ = 0.26 (s, 9 H), 1.29 (t, J = 7.6 Hz, 6 H), 2.81-2.86 (m, 4 H), 3.82 (s, 3 H), 6.87 (d, J = 8.8 Hz, 2 H), 7.36 (s, 2 H), 7.45 (s, 4 H), 7.46 (s, 1 H), 7.48 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = -0.12, 14.6, 14.7, 27.1, 27.2, 55.1, 86.9, 90.3, 93.5, 94.3, 96.2, 104.7, 114.0,
115.5, 121.7, 122.8, 123.1, 123.6, 131.2, 131.3, 131.5, 131.8, 132.9, 143.1, 143.3,
159.6. Other TMS-protected phenylene ethynylenes 3c and 3d were prepared similarly from the corresponding sulfones and aldehydes by one-shot
double elimination process.6l,m
(ii) Preparation of 4e: A 100-mL flask was charged with 3e (1.73 g, 3.76 mmol), K2CO3 (2.6 g, 18.8 mmol), THF (20 mL) and MeOH (20 mL). The mixture was stirred at r.t.
for 2 h. After usual workup with EtOAc and aq NH4Cl, the organic layer was dried over MgSO4 and filtered. The solvents were evaporated, and the residue was chromatographed (CH2Cl2-hexane, 3:7) to give 4e (1.35g, 93%) as a colorless solid. 1H NMR (500 MHz, CDCl3): δ = 1.27-1.31 (m, 6 H), 2.80-2.86 (m, 4 H), 3.16 (s, 1 H), 3.77 (s, 3 H), 6.84
(d, J = 8.6 Hz, 2 H), 7.36 (s, 2 H), 7.45 (s, 5 H), 7.47 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.6, 14.7, 27.1, 30.2, 55.2, 78.9, 83.3, 86.8, 90.3, 93.3, 94.4, 114.0, 115.4,
121.6, 121.7, 123.1, 123.9, 131.3, 131.4, 131.5, 132.0, 132.9, 143.2, 143.4, 159.6.
(iii) Preparation of 10a: A solution of lithium naph-thalenide was prepared by stirring a mixture of naphthalene
(1.17 g, 9.16 mmol) and lithium (63.6 mg, 9.16 mmol) in THF (8 mL) at r.t. for 3 h.
To the above lithium naph-thalenide solution, diethylbis(phenylethynyl)silane (0.66
g, 2.29 mmol) in THF (8 mL) was added over 15 min, and the mixture was stirred at
r.t. for 15 min. ZnCl2 (1.56 g, 11.4 mmol) in THF (12 mL) was added at -20 °C, and the mixture was stirred
for 20 min. After N-bromosuccinimide (1.01 g, 5.72 mmol) had been added at -78 °C, the flask was shielded
from light by covering with foil and stirred at -78 °C for 1 h. After usual workup
with Et2O and aq NH4Cl, the organic layer was washed with half-saturated Na2S2O3 solution, dried over MgSO4 and filtered. The solvents were evapor-ated, and the crude dibromosilole 7 was used for the next step without further purification. To a solution of ZnCl2 (0.625 g, 4.58 mmol) in THF (8 mL) and Et3N (1.85 g, 18.3 mmol) were added dibromosilole 7 in THF (4 mL) and 4e (1.779 g, 4.58 mmol) in THF (4 mL). After Pd(Ph3P)4 (0.264 g, 0.22 mmol) had been added, the mixture was stirred at 65 °C for 13 h. After
evaporation of the solvents, the residue was chromatographed (EtOAc-hexane, 1:9) to
give 10a (2.82 g, 58%) as a yellow solid. 1H NMR (500 MHz, CDCl3)): δ = 1.13-1.31 (m, 22 H), 2.84 (m, 8 H), 3.84 (s, 6 H), 6.90 (d, J = 8.5 Hz, 4 H), 7.19-7.24 (m, 14 H), 7.36 (s, 4 H), 7.42 (d, J = 8.0 Hz, 4 H), 7.48 (d, J = 9.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 2.6, 7.1, 14.6, 14.7, 27.1, 55.2, 86.8, 90.2, 92.7, 93.8, 94.2, 99.6, 114.0,
115.4, 121.8, 122.2, 122.7, 122.9, 124.2, 127.2, 127.5, 129.3, 131.2, 131.4 (2), 132.9,
137.5, 143.1, 143.3, 159.6, 162.7. ESI-MS: m/z [M + H] calcd for C78H67O2Si: 1063.49; found: 1063.1.