Subscribe to RSS
DOI: 10.1055/s-2007-984885
Regioselective Synthesis of Functionally Crowded Benzenes at Room Temperature through Ring Transformation of 2H-Pyran-2-ones [1]
Publication History
Publication Date:
12 July 2007 (online)

Abstract
An expeditious synthesis of highly substituted benzenes with electron-withdrawing or electron-donating substituents is described and illustrated by carbanion-induced ring transformation of 2H-pyran-2-one with malononitrile in excellent yield. The novelty of the reaction lies in the creation of an aromatic ring at room temperature from a six-membered lactone under mild reaction conditions.
Key words
2H-pyran-2-one - benzene - malononitrile - ring transformation reaction
C.D.R.I. Communication No 7224.
- 2a 
             Modern Arene Chemistry  
             
            Astrue D. Wiley-VCH; Weinheim, Germany: 2002.
- 2b 
             
            Xi C.Chen C.Lin J.Hong X. Org. Lett. 2005, 7: 347
- 2c 
             
            Katritzky AR.Belyakov SA.Henderson SA.Steel PJ. J. Org. Chem. 1997, 62: 8215
- 2d 
             
            Covarrubias-Zuniga A.Rios-Barrios E. J. Org. Chem. 1997, 62: 5688
- 3a 
             
            Olah GA. Acc. Chem. Res. 1971, 4: 240
- 3b 
             
            Bunnett JF.Zahler RE. Chem. Rev. 1951, 49: 273
- 4a 
             
            Negishi E. Acc. Chem. Res. 1982, 11: 413
- 4b 
             
            Brown JM.Cooley NA. Chem. Rev. 1988, 88: 1031
- 4c 
             
            Mitchell TN. Synthesis 1992, 803
- 4d 
             
            Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2497
- 4e 
             
            Metal-Catalyzed Cross-Coupling Reactions
              
            Vol. 1, 1st ed.: 
             
            de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004.
- 4f 
             
            Metal-Catalyzed Cross-Coupling Reactions
              
            Vol. 2, 2nd ed.: 
             
            de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004.
- 5a 
             
            Beak P.Snieckus V. Acc. Chem. Res. 1982, 15: 306
- 5b 
             
            Chauder B.Green L.Snieckus V. Pure Appl. Chem. 1999, 71: 1521
- 5c 
             
            Chen G.Lam WH.Fok WS.Lee HW.Kwong FY. Chem. Asian J. 2007, 2: 306 ; and references cited therein
- 6a 
             
            Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174Reference Ris Wihthout Link
- 6b 
             
            Campeau L.-C.Stuart DR.Fagnou K. Aldrichimica Acta 2007, 40: 3541Reference Ris Wihthout Link
- 6c 
             
            Goossen LG.Rodriguez N.Melzer B.Linder C.Deng G.Levy LM. J. Am. Chem. Soc. 2007, 129: 4824Reference Ris Wihthout Link
- 6d 
             
            Becht J.-M.Catala C.Drian CL.Wagner A. Org. Lett. 2007, 9: 1781Reference Ris Wihthout Link
- 7a 
             
            Snieckus V. Chem. Rev. 1990, 90: 879
- 7b 
             
            Maggi R.Schlosser M. J. Org. Chem. 1996, 61: 5430
- 8 
             
            Chotana GA.Rak MA.Smith MR. J. Am. Chem. Soc. 2005, 127: 10539
- 9 
             
            Walker SD.Barder TE.Martinelli JR.Buchwald SL. Angew. Chem. Int. Ed. 2004, 43: 1871
- 10 
             
            Altenhoff G.Goddard R.Lehmann CW.Glorius FJ. J. Am. Chem. Soc. 2004, 126: 15195
- 11 
             
            Bamfield P.Gordon PF. Chem. Soc. Rev. 1984, 13: 441
- 12a 
             
            Dötz KH.Tomuschat P. Chem. Soc. Rev. 1999, 28: 187
- 12b 
             
            Wang H.Huang J.Wulff WD.Rheingold AL. J. Am. Chem. Soc. 2003, 125: 8980
- 12c 
             
            Vorogushin AV.Wulff WD.Hansen H.-J. J. Am. Chem. Soc. 2002, 124: 6512
- 13a 
             
            Danheiser RL.Brisbois RG.Kowalczyk JJ.Miller RF. J. Am. Chem. Soc. 1990, 112: 3093
- 13b 
             
            Danheiser RL.Gee SK. J. Org. Chem. 1984, 49: 1672
- 14a 
             
            Xi Z.Sato K.Gao Y.Lu J.Takahashi T. J. Am. Chem. Soc. 2003, 125: 9568
- 14b 
             
            Takahashi T.Ishikawa M.Huo S. J. Am. Chem. Soc. 2002, 124: 388
- 15a 
             
            Saito S.Yamamoto Y. Chem. Rev. 2000, 100: 2901
- 15b 
             
            Bonaga LVR.Zhang H.-C.Moretto AF.Ye H.Gauthier DA.Li J.Leo GC.Maryanoff BE. J. Am. Chem. Soc. 2005, 127: 3473
- 16a 
             
            Asao N.Nogami T.Lee S.Yamamoto Y. J. Am. Chem. Soc. 2003, 125: 10921
- 16b 
             
            Asao N.Takahashi K.Lee S.Kasahara T.Yamamoto Y. J. Am. Chem. Soc. 2002, 124: 12650
- 16c 
             
            Asao N.Aikawa H.Yamamoto Y. J. Am. Chem. Soc. 2004, 126: 7458
- 17 
             
            Lee MJ.Lee KY.Park DY.Kim JN. Tetrahedron 2006, 62: 3128
- 18a 
             
            Langer P.Bose G. Angew. Chem. Int. Ed. 2003, 42: 4033
- 18b 
             
            Katritzky AR.Li J.Xie L. Tetrahedron 1999, 55: 8263
- 18c 
             
            Park DY.Kim SJ.Kim TH.Kim JN. Tetrahedron Lett. 2006, 47: 6315
- 18d 
             
            Park DY.Lee KY.Kim JN. Tetrahedron Lett. 2007, 48: 1633
- 19a 
             
            Sadek KU.Selim MA.Elmaghraby MA.Elnagdi MH. Pharmazie 1993, 48: 419
- 19b 
             
            Hartke K.Sauerbier M.Richter WF. Arch. Pharm. (Weinheim, Ger.) 1992, 325: 279
- 19c 
             
            Gewald K.Schaefer H. Z. Chem. 1981, 21: 183
- 20 
             
            Victory P.Borrell JI.Vidal-Ferran A.Montenegro E.Jimeno ML. Heterocycles 1993, 36: 2273
- 21 
             
            Yu Z.Velasco D. Tetrahedron Lett. 1999, 40: 3229
- 22a 
             
            Woodward BT.Posner GH. Advances in Cycloaddition Vol. 5:Harmata M. JAI Press; Greenwich USA: 1999. p.47
- 22b 
             
            Posner GH.Afarinkia K.Dai H. Org. Synth. 1995, 73: 231
- 22c 
             
            Afarinkia K.Bearpark MJ.Ndibwami A. J. Org. Chem. 2005, 70: 1122 ; and references cited therein
- 23 
             
            Goel A.Singh FV.Sharon A.Maulik PR. Synlett 2005, 623
- 24 
             
            Goel A.Singh FV.Verma D. Synlett 2005, 2027
- 25 
             
            Goel A.Dixit M.Verma D. Tetrahedron Lett. 2005, 46: 491
- 26a 
             
            Goel A.Verma D.Dixit M.Raghunandan R.Maulik PR. J. Org. Chem. 2006, 71: 804
- 26b 
             
            Goel A.Singh FV.Dixit M.Verma D.Raghunandan R.Maulik PR. Chem. Asian J. 2007, 2: 239
- 27 
             
            Tominaga Y.Ushirogochi A.Matsuda Y. J. Heterocycl. Chem. 1987, 24: 1557
References and Notes
C.D.R.I. Communication No 7224.
28General Procedure for the Synthesis of 5 and 7: A mixture of 5-alkyl-/5,6-dialkyl-3-cyano-4-methylsulfanyl-2H-pyran-2-ones 3 or 6-isopropyl-4-sec-amino-2H-pyran-2-ones 6 (1 mmol), malononitrile (1.2 mmol) and powdered KOH (1.2 mmol) in anhyd DMF (5 mL) was stirred at r.t. for 8-12 h. After completion of the reaction, the reaction mixture was poured into ice-water with vigorous stirring and finally neutralized with dilute HCl. The solid thus obtained was filtered and purified on a neutral alumina column using CHCl3-hexane (1:9) as eluent. 5a: yield: 89%; white solid; mp 236-238 °C. 1H NMR (200 MHz, CDCl3): δ = 2.48 (s, 3 H, Me), 2.54 (s, 3 H, SMe), 5.10 (br s, 2 H, NH2), 6.42 (s, 1 H, ArH). 13C NMR (50.0 MHz, CDCl3 + DMSO): δ = 19.95, 26.68, 96.73, 98.40, 118.95, 119.83, 120.87, 152.67, 155.72, 158.00. IR (KBr): 2213 (CN), 3353, 3442 (NH2) cm-1. MS (FAB): m/z = 204 [M+ + 1]. HRMS: m/z calcd for C10H9N3S: 203.0532; found: 203.0517. 7a: yield: 86%; white solid; mp 190-192 °C. 1H NMR (200 MHz, CDCl3): δ = 1.27 (d, J = 6.8 Hz, 6 H, 2 × Me), 3.15-3.37 (m, 5 H, CH, 2 × CH2), 3.83-3.91 (m, 4 H, 2 × CH2), 5.10 (br s, 2 H, NH2), 6.17 (s, 1 H, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 21.38, 32.24, 49.76, 65.40, 85.02, 87.90, 102.70, 114.73, 115.00, 152.77, 157.62, 157.92. IR (KBr): 2210 (CN), 3353 (NH), 3412 (NH) cm-1. MS (ESI): m/z = 271 [M+ + 1]. HRMS: m/z calcd for C15H18N4O: 270.1481; found: 270.1483.
29General Procedure for the Synthesis of 6: A mixture of compound 3d (1.0 mmol) and secondary amine (1.2 mmol) was refluxed in MeOH (20 mL) for 6-8 h. After completion of the reaction, MeOH was evaporated under vacuum, and the reaction mixture was washed with ice-cooled H2O. The crude was purified on a silica gel column using CHCl3 as eluent. 6a: yield 74%; white solid; mp 162-164 °C. 1H NMR (200 MHz, CDCl3): δ = 1.23 (d, J = 6.8 Hz, 6 H, 2 × Me), 2.00-2.10 (m, 4 H, 2 × CH2), 2.62-2.73 (m, 1 H, CH), 3.54-3.62 (m, 2 H, CH2), 4.02-4.10 (m, 2 H, CH2), 5.71 (s, 1 H, CH). 13C NMR (75.5 MHz, CDCl3): δ = 20.36, 34.00, 49.89, 66.99, 73.24, 94.52, 117.63, 161.92, 163.11, 172.59. IR (KBr): 1704 (CO), 2207 (CN) cm-1. MS (ESI): m/z = 249 [M+ + 1].
 
    