References and Notes
For general information, see:
<A NAME="RU04107ST-1A">1a</A>
Renaud P.
Gerster M.
Angew. Chem. Int. Ed.
1998,
37:
2562
<A NAME="RU04107ST-1B">1b</A>
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
<A NAME="RU04107ST-1C">1c</A>
Bar G.
Parsons AF.
Chem. Soc. Rev.
2003,
32:
251
<A NAME="RU04107ST-1D">1d</A>
Sibi MP.
Manyem S.
Zimmerman J.
Chem. Rev.
2003,
103:
3263
For selected examples of enantioselective radical additions and allylations, see:
<A NAME="RU04107ST-2A">2a</A>
Sibi MP.
Petrovic G.
Zimmerman J.
J. Am. Chem. Soc.
2005,
127:
2390
<A NAME="RU04107ST-2B">2b</A>
Sibi MP.
Zimmerman J.
Rheault T.
Angew. Chem. Int. Ed.
2003,
42:
4521
<A NAME="RU04107ST-2C">2c</A>
Watanabe Y.
Mase N.
Furue R.
Toru T.
Tetrahedron Lett.
2001,
42:
2981
<A NAME="RU04107ST-2D">2d</A>
Iserloh U.
Curran DP.
Kanemasa S.
Tetrahedron: Asymmetry
1999,
10:
2417
<A NAME="RU04107ST-2E">2e</A>
Murakata M.
Jono T.
Mizuno Y.
Hoshino O.
J. Am. Chem. Soc.
1997,
119:
11713
<A NAME="RU04107ST-2F">2f</A>
Sibi MP.
Ji J.
Wu JH.
Gürtler S.
Porter NA.
J. Am. Chem. Soc.
1996,
118:
9200
<A NAME="RU04107ST-2G">2g</A>
Wu JH.
Radinov R.
Porter NA.
J. Am. Chem. Soc.
1995,
117:
11029
For selected examples of enantioselective H-atom transfer reactions, see:
<A NAME="RU04107ST-3A">3a</A>
Sibi MP.
Patil K.
Angew. Chem. Int. Ed.
2004,
43:
1235
<A NAME="RU04107ST-3B">3b</A>
Sibi MP.
Asano Y.
Sausker JB.
Angew. Chem. Int. Ed.
2001,
40:
1293
<A NAME="RU04107ST-3C">3c</A>
Murakata M.
Tsutsui H.
Takeuchi N.
Hoshino O.
Tetrahedron
1999,
55:
10295
For selected examples of enantioselective reductions using chiral H-atom transfer
reagents, see:
<A NAME="RU04107ST-4A">4a</A>
Cai Y.
Roberts BP.
Tocher DA.
J. Chem. Soc., Perkin Trans. 1
2002,
1376
<A NAME="RU04107ST-4B">4b</A>
Dakternieks D.
Schiesser CH.
Aust. J. Chem.
2001,
54:
89
<A NAME="RU04107ST-4C">4c</A>
Blumenstein M.
Schwarzkopf K.
Metzger JO.
Angew. Chem. Int. Ed.
1997,
36:
235
<A NAME="RU04107ST-4D">4d</A>
Nanni D.
Curran DP.
Tetrahedron: Asymmetry
1996,
7:
2417
<A NAME="RU04107ST-5">5</A>
Nishida M.
Hayashi H.
Nishida A.
Kawahara N.
Chem. Commun.
1996,
579
<A NAME="RU04107ST-6">6</A>
Hiroi K.
Ishii M.
Tetrahedron Lett.
2000,
41:
7071
<A NAME="RU04107ST-7A">7a</A>
Yang D.
Gu S.
Yan Y.-L.
Zhu N.-Y.
Cheung K.-K.
J. Am. Chem. Soc.
2001,
123:
8612
<A NAME="RU04107ST-7B">7b</A>
Yang D.
Gu S.
Yan Y.-L.
Zhao H.-W.
Zhu N.-Y.
Angew. Chem. Int. Ed.
2002,
41:
3014
<A NAME="RU04107ST-7C">7c</A>
Yang D.
Zheng B.-F.
Gao Q.
Gu S.
Zhu N.-Y.
Angew. Chem. Int. Ed.
2005,
45:
255
<A NAME="RU04107ST-8">8</A> Transfer of chirality in radical cyclization has been reported. See:
Curran DP.
Liu W.
Chen CH.-T.
J. Am. Chem. Soc.
1999,
121:
11012
<A NAME="RU04107ST-9">9</A>
Miyabe H.
Asada R.
Toyoda A.
Takemoto Y.
Angew. Chem. Int. Ed.
2006,
45:
5863
For reviews on the radical reaction of imines, see:
<A NAME="RU04107ST-10A">10a</A>
Fallis AG.
Brinza IM.
Tetrahedron
1997,
53:
17543
<A NAME="RU04107ST-10B">10b</A>
Naito T.
Heterocycles
1999,
50:
505
<A NAME="RU04107ST-10C">10c</A>
Friestad GK.
Tetrahedron
2001,
57:
5461
<A NAME="RU04107ST-10D">10d</A>
Miyabe H.
Naito T.
J. Synth. Org. Chem. Jpn.
2001,
59:
35
<A NAME="RU04107ST-10E">10e</A>
Miyabe H.
Ueda M.
Naito T.
Synlett
2004,
1140
For our recent studies on radical reaction of imines, see:
<A NAME="RU04107ST-11A">11a</A>
Miyabe H.
Yamaoka Y.
Takemoto Y.
Synlett
2004,
2597
<A NAME="RU04107ST-11B">11b</A>
Miyabe H.
Yamaoka Y.
Takemoto Y.
J. Org. Chem.
2005,
70:
3324
<A NAME="RU04107ST-11C">11c</A>
Ueda M.
Miyabe H.
Teramachi M.
Miyata O.
Naito T.
J. Org. Chem.
2005,
70:
6653
<A NAME="RU04107ST-12">12</A>
Friestad GK.
Shen Y.
Ruggles EL.
Angew. Chem. Int. Ed.
2003,
42:
5061
<A NAME="RU04107ST-13A">13a</A>
Miyabe H.
Ushiro C.
Ueda M.
Yamakawa K.
Naito T.
J. Org. Chem.
2000,
65:
176
<A NAME="RU04107ST-13B">13b</A>
Miyabe H.
Yamaoka Y.
Takemoto Y.
J. Org. Chem.
2006,
71:
2099
For our recent studies on radical addition-cyclization of oxime ethers, see:
<A NAME="RU04107ST-14A">14a</A>
Miyabe H.
Ueda M.
Fujii K.
Nishimura A.
Naito T.
J. Org. Chem.
2003,
68:
5618
<A NAME="RU04107ST-14B">14b</A>
Miyabe H.
Tanaka H.
Naito T.
Chem. Pharm. Bull.
2004,
52:
74
Hydroxamic acid derivatives were explored as achiral templates in Diels-Alder reaction.
See:
<A NAME="RU04107ST-15A">15a</A>
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1731
<A NAME="RU04107ST-15B">15b</A>
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1735
<A NAME="RU04107ST-16">16</A>
Oxime ethers and hydrazones have emerged as excellent radical acceptors.
For reviews, see:
<A NAME="RU04107ST-17A">17a</A>
Yorimitsu H.
Shinokubo H.
Oshima K.
Synlett
2002,
674
<A NAME="RU04107ST-17B">17b</A>
Ollivier C.
Renaud P.
Chem. Rev.
2001,
101:
3415
<A NAME="RU04107ST-18">18</A>
The absolute configuration at the stereocenter of cis-3a was assumed from the similarity between the present reaction and the previously reported
reaction.9 The relative configuration of the trans and cis diastereomers was determined by NOESY experiments.
<A NAME="RU04107ST-19">19</A>
Since the activity of triethylborane also influenced the enantioselectivity, we used
a newly opened bottle of 1 M Et3B in hexane for this experiment.
<A NAME="RU04107ST-20">20</A>
We also tested the effect of additives and other radical initiators. When a stoichiometric
amount of Bu3SnH was employed as a chain carrier, the enantioselectivity was remarkably diminished,
leading to a 40% ee of cis-3a in 8% yield after being stirred at -78 °C for 3 h. In the case of the reaction using
Et2Zn or 9-BBN as a radical initiator, no reaction occurred.
<A NAME="RU04107ST-21">21</A>
Typical Experimental Procedure:
A solution of oxime ether 1a (41 mg, 0.12 mmol), Zn(OTf)2 (43 mg, 0.12 mmol) and ligand 2 (43 mg, 0.12 mmol) in CH2Cl2 (1.0 mL) was stirred for 30 min under a nitrogen atmosphere at 20 °C. To the reaction
mixture were added i-PrI (0.36 mL, 3.6 mmol) and Et3B (1.0 M in hexane, 2.4 mL, 2.4 mmol) at -78 °C. After being stirred at the same temperature
for 10 h, the reaction mixture was diluted with sat. NaHCO3 and then extracted with EtOAc. The organic phase was dried over MgSO4 and concentrated at reduced pressure. Purification of the residue by column chromatography
(hexane-EtOAc, 2:1) afforded product 3a (32 mg, 70%) as a mixture of cis and trans isomers which were separated by column chromatography (hexane-EtOAc, 4:1). The enantioselectivity
of products was determined by HPLC using AD-H column.
Representative Characterization Data:
cis-3a: colorless oil; [α]27
D -11.4 (c = 0.28, CHCl3; 85% ee). IR (CHCl3): 1704 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.46 (m, 10 H), 5.35 (s, 1 H), 4.98 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.60 (s, 2 H), 3.28-3.37 (m, 2 H), 3.23 (m, 1 H), 1.75 (m, 1 H),
1.50 (dd, J = 4.8, 14.6 Hz, 1 H), 1.21 (dd, J = 7.4, 14.6 Hz, 1 H), 1.15 (s, 3 H), 0.91 (d, J = 6.7 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 173.4, 137.3, 135.3, 129.5, 128.9, 128.6 (2 × C), 128.4, 128.1, 76.6, 76.3,
61.8, 49.1, 44.5, 39.2, 25.0, 24.1, 23.7, 22.0. MS (FAB+): m/z = 383 (88) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2331.
trans-3a: colorless oil. IR (CHCl3): 1705 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.47 (m, 10 H), 5.37 (s, 1 H), 4.97 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.61 (s, 2 H), 3.56 (m, 1 H), 3.44 (dd, J = 7.0, 8.9 Hz, 1 H), 3.04 (dd, J = 6.4, 8.9 Hz, 1 H), 1.64 (m, 1 H), 1.39-1.52 (m, 2 H), 1.00 (s, 3 H), 0.89 (d, J = 6.7 Hz, 3 H), 0.83 (d, J = 6.7 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 174.0, 137.3, 135.3, 129.5, 128.9, 128.6, 128.5 (2 × C), 128.1, 76.5, 76.4,
56.9, 49.3, 44.7, 44.6, 24.7, 24.5, 22.9, 17.5. MS (FAB+): m/z = 383 (63) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2342.