Synthesis 2007(20): 3252-3256  
DOI: 10.1055/s-2007-983831
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 1,5-Enynes by Brønsted Acid Catalyzed Substitution of Propargylic Alcohols and One-Pot Synthesis of Bicyclo[3.1.0]hexenes

Roberto Sanz*a, Alberto Martíneza, Delia Miguela, Julia M. Álvarez-Gutiérreza, Félix Rodríguez*b
a Departamento de Química, Área de Química Orgánica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain
Fax: +34(947)258831; e-Mail: [email protected];
b Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, C/ Julián Clavería 8, 33006-Oviedo, Spain
Fax: +34(98)5103447; e-Mail: [email protected];
Further Information

Publication History

Received 12 March 2007
Publication Date:
30 July 2007 (online)


A practical air and moisture tolerant procedure for the preparation of 1,5-enynes from propargylic alcohols by the Brønsted acid catalyzed direct propargylic substitution of the hydroxy group with allylsilanes is described. Also, a straightforward sequential catalytic protocol for the synthesis of bicyclo[3.1.0]hexane derivatives, from readily available starting materials, is presented.


  • 1a Nicholas KM. Acc. Chem. Res.  1987,  20:  207 
  • 1b Teobald BJ. Tetrahedron  2002,  58:  4133 
  • 2 Nishibayashi Y. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2003,  125:  6060 
  • 3 Luzung MR. Toste FD. J. Am. Chem. Soc.  2003,  125:  15760 
  • 4 Georgy M. Boucard V. Campagne J.-M. J. Am. Chem. Soc.  2005,  127:  14180 
  • 5 Zhan Z.-P. Yang W.-Z. Yang R.-F. Yu J.-L. Li J.-P. Liu H.-J. Chem. Commun.  2006,  3352 
  • 6 Kabalka GW. Yao M.-L. Borella S. J. Am. Chem. Soc.  2006,  128:  11320 
  • 7a Sanz R. Martínez A. Álvarez-Gutiérrez J.-M. Rodríguez F. Eur. J. Org. Chem.  2006,  1383 
  • 7b Sanz R. Martínez A. Miguel D. Álvarez-Gutiérrez J.-M. Rodríguez F. Org. Lett.  2007,  9:  727 
  • 8 Sanz R. Martínez A. Miguel D. Álvarez-Gutiérrez J.-M. Rodríguez F. Adv. Synth. Catal.  2006,  348:  1841 
  • 9 Zhang L. Sun J. Kozmin SA. Adv. Synth. Catal.  2006,  348:  2271 
  • 10a Mamane V. Gress T. Krause H. Fürstner A. J. Am. Chem. Soc.  2004,  126:  8654 
  • 10b Harrak Y. Blaszykowski C. Bernard M. Cariou K. Mainetti E. Mouries V. Dhimane AL. Fensterbank L. Malacria M. J. Am. Chem. Soc.  2004,  126:  8656 
  • 10c Luzung MR. Markham JP. Toste FD. J. Am. Chem. Soc.  2004,  126:  10858 
  • 10d Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2004,  126:  16066 
  • 11 Concurrent tandem catalysis constitutes a significant challenge for synthetic chemists and presents a number of opportunities to improve chemical transformations, see: Wasilke J.-C. Obrey SJ. Baker RT. Bazan GC. Chem. Rev.  2005,  105:  1001 
  • 12 For the preparation of 2b, see: Hayashi T. Kabeta K. Hamachi I. Kumada M. Tetrahedron Lett.  1983,  24:  2865 
  • Some interesting processes in which different transition-metal catalysts work in the same medium have been reported. However, in most cases, the reaction conditions have to be changed. See, for instance:
  • 14a Jeong N. Seo SD. Shin JY. J. Am. Chem. Soc.  2000,  122:  10220 
  • 14b Son SU. Park KH. Chung YK. J. Am. Chem. Soc.  2002,  124:  6838 

In some cases, and when refluxing conditions are required, competitive formation of the corresponding symmetric ether is observed (ca. 20% isolated yield).