Synthesis 2007(21): 3427-3430  
DOI: 10.1055/s-2007-983829
PSP
© Georg Thieme Verlag Stuttgart · New York

Catalytic Enantioselective Reductive Cyclization of Acetylenic Aldehydes via Hydrogenation

Jong Uk Rhee, Regan A. Jones, Michael J. Krische*
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
Fax: +1(512)4718696; e-Mail: [email protected];
Further Information

Publication History

Received 20 April 2007
Publication Date:
30 July 2007 (online)

Abstract

The reductive cyclization of acetylenic aldehydes is accomplished via rhodium-catalyzed asymmetric hydrogenation. This process provides access to a wide variety of cyclic allylic alcohols in good yields and with high levels of asymmetric induction.

    References

  • For selected reviews encompassing intra- and intermolecular direct reductive coupling of alkynes to carbonyl partners, see:
  • 1a Ojima I. Tzamarioudaki M. Li Z. Donovan RJ. Chem. Rev.  1996,  96:  635 
  • 1b Montgomery J. Acc. Chem. Res.  2000,  33:  467 
  • 1c Montgomery J. Amarashinghe KKD. Chowdhury SK. Oblinger E. Seo J. Savchenko AV. Pure Appl. Chem.  2002,  74:  129 
  • 1d Ikeda S.-I. Angew. Chem. Int. Ed.  2003,  42:  5120 
  • 1e Miller KM. Molinaro C. Jamison TF. Tetrahedron: Asymmetry  2003,  14:  3619 
  • 1f Montgomery J. Angew. Chem. Int. Ed.  2004,  43:  3890 
  • 1g Jang H.-Y. Krische MJ. Acc. Chem. Res.  2004,  37:  653 
  • Alkyne reductive coupling may be achieved indirectly via alkyne hydrometalation using hydroboranes or Cp2ZrHCl followed by transmetalation to afford organozinc reagents, which participate in catalyzed enantioselective additions to aldehydes:
  • 2a Oppolzer W. Radinov R. Helv. Chim. Acta  1992,  75:  170 
  • 2b Oppolzer W. Radinov R. J. Am. Chem. Soc.  1993,  115:  1593 
  • 2c Soai K. Takahashi K. J. Chem. Soc., Perkin Trans. 1  1994,  1257 
  • 2d Wipf P. Xu W. Tetrahedron Lett.  1994,  35:  5197 
  • 2e Wipf P. Xu W. Org. Synth.  1996,  74:  205 
  • 2f Wipf P. Ribe S. J. Org. Chem.  1998,  63:  6454 
  • 2g Oppolzer W. Radinov RN. El-Sayed E. J. Org. Chem.  2001,  66:  4766 
  • 2h Dahmen S. Bräse S. Org. Lett.  2001,  3:  4119 
  • 2i Ji J.-X. Qiu L.-Q. Yip CW. Chan ASC. J. Org. Chem.  2003,  68:  1589 
  • 2j Lurain AE. Walsh PJ. J. Am. Chem. Soc.  2003,  125:  10677 
  • 2k Ko D.-H. Kang S.-W. Kim KH. Chung Y. Ha D.-C. Bull. Korean Chem. Soc.  2004,  25:  35 
  • 2l Jeon S.-J. Chen YK. Walsh PJ. Org. Lett.  2005,  7:  1729 
  • 2m Jeon S.-J. Fisher EL. Carroll PJ. Walsh PJ. J. Am. Chem. Soc.  2006,  128:  9618 
  • 3 Ojima I. Tzamarioudaki M. Tsai C.-Y. J. Am. Chem. Soc.  1994,  116:  3643 
  • 4 Crowe WE. Rachita MJ. J. Am. Chem. Soc.  1995,  117:  6787 
  • 5 Oblinger E. Montgomery J. J. Am. Chem. Soc.  1997,  119:  9065 
  • 6a Tang X.-Q. Montgomery J. J. Am. Chem. Soc.  1999,  121:  6098 
  • 6b Tang X.-Q. Montgomery J. J. Am. Chem. Soc.  2000,  122:  6950 
  • 6c Mahandru GM. Liu G. Montgomery J. J. Am. Chem. Soc.  2004,  126:  3698 
  • 6d Knapp-Reed B. Mahandru GM. Montgomery J. J. Am. Chem. Soc.  2005,  127:  13156 
  • 7 Huang W.-S. Chan J. Jamison TF. Org. Lett.  2000,  2:  4221 
  • 8 Miller KM. Huang W.-S. Jamison TF. J. Am. Chem. Soc.  2003,  125:  3442 
  • 9 Rhee JU. Krische MJ. J. Am. Chem. Soc.  2006,  128:  10674 
  • 10a Kong J.-R. Ngai M.-Y. Krische MJ. J. Am. Chem. Soc.  2006,  128:  718 
  • 10b Ngai M.-Y. Barchuk A. Krische MJ. J. Am. Chem. Soc.  2007,  129:  280 
  • 11 Musashi Y. Sakaki S. J. Am. Chem. Soc.  2002,  124:  7588