Synthesis 2007(15): 2249-2272  
DOI: 10.1055/s-2007-983803
PAPER
© Georg Thieme Verlag Stuttgart · New York

Novel Synthesis of Naturally Occurring Pulvinones: A Heck Coupling, Transesterification­, and Dieckmann Condensation Strategy

David Bernier, Reinhard Brückner*
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg, Germany
Fax: +49(761)2036100; e-Mail: reinhard.brueckner@organik.chemie.uni-freiburg.de;
Further Information

Publication History

Received 14 May 2007
Publication Date:
26 July 2007 (online)

Abstract

Phosphine-free Heck alkenylations of iodoarenes with trifluoroethyl 2-acetoxyacrylate (19) led stereoselectively to trifluo­roethyl (Z)-2-acetoxycinnamates 31-34, 42, 44, and 51. Deacetylation followed by acylation with N,N′-dicyclohexylcarbodiimide activated arylacetic acids yielded the isomerically pure trifluoro­ethyl (Z)-2-(arylacetoxy)cinnamates 38a-o. These were excellent substrates of potassium tert-butoxide mediated Dieckmann condensations, and distinctly superior to fluorine-free analogues, furnishing Z-configured pulvinones 1a-o (1i = aspulvinone A). Cleavage of the aryl ether moieties of pulvinones 1d,e,h,n,o provided aspulvinone E (1r), aspulvinone G (1s), 3′,4,4′-trihydroxypulvinone (1v), and aspulvinones B (1x) and H (1y), respectively. The conversion of the 2,4-diiodophenyl ethers 48 and 49 into the 4-iodo-2-prenylphenyl ethers 46 and 50, respectively, was effected by unprecedented ortho-selective iodine-magnesium exchange reactions followed by prenylation.

    References

  • Reviews:
  • 1a Pattenden G. Prog. Chem. Nat. Prod.  1978,  35:  133 
  • 1b Gill M. Steglich W. Prog. Chem. Nat. Prod.  1987,  51:  1 
  • 1c Brückner R. Curr. Org. Chem.  2001,  5:  679 
  • 2a Rehse K. Lehmke J. Arch. Pharm. (Weinheim, Ger.)  1985,  318:  11 
  • 2b Caufield CE, Antane SA, Morris KM, Naughton SM, Quagliato DA, Andrae PM, Enos A, and Chiarello JF. inventors; WO  2005019196. 
  • 2c Antane S. Caufield CE. Hu W. Keeney D. Labthavikul P. Morris K. Naughton SM. Petersen PJ. Rasmussen BA. Singh G. Yang Y. Bioorg. Med. Chem. Lett.  2006,  16:  176 
  • Structure elucidation (later confirmed through synthesis):
  • 3a Ramage R. Griffiths GJ. Shutt FE. Sweeney JNA. J. Chem. Soc., Perkin Trans. 1  1984,  1539 
  • First isolation of a naturally occurring pulvinone, namely 3′,4,4′-trihydroxypulvinone (1v), from the higher fungus Suillus grevillei:
  • 3b Edwards RL. Gill M. J. Chem. Soc., Perkin Trans. 1  1973,  1921 
  • 4a First isolation of 7 naturally occurring pulvinones , later named5 aspulvinones A-G, from Aspergillus terreus: Ojima N. Takenaka S. Seto S. Phytochemistry  1973,  12:  2527 ; this study attributed correctly structure 1r to aspulvinone E and described the remaining pulvinones as structurally incompletely defined derivatives thereof
  • 4b independent isolation of compound 1r (‘aspergillide B1’ until renamed5 aspulvinone E) from the same source: Golding BT. Rickards RW. Vanek Z. J. Chem. Soc., Perkin Trans. 1  1975,  1961 
  • 5 Origin of ‘aspulvinone’ terminology: Ojima N. Takahashi T. Ogura K. Seto S. Tetrahedron Lett.  1976,  13:  1013 ; this paper also describes the isolation and structure determination of aspulvinone H(1y)
  • 6 Example of a structurally complex pulvinic acid: Winner M. Giménez A. Schmidt H. Sontag B. Steffan B. Steglich W. Angew. Chem. Int. Ed.  2004,  43:  1883 ; Angew. Chem. 2004, 116, 1919
  • 7a Ojima N. Ogura K. Seto S. J. Chem. Soc., Chem. Commun.  1975,  717 
  • 7b Takahashi I. Ojima N. Ogura K. Seto S. Biochemistry  1978,  17:  2696 
  • 7c Kobayashi M. Ojima N. Ogura K. Seto S. Chem. Lett.  1979,  579 
  • 7d Sagami I. Ojima N. Ogura K. Seto S. Methods Enzymol.  1985,  110:  320 
  • 8 The structures of aspulvinone A (1i, correct), aspulvinone B (later revised to 1x),9d aspulvinone C (later revised to 1z),9c aspulvinone D (later revised to be 1aa),9c aspulvinone F (later revised),7b,9c and aspulvinone G (later revised to 1s),9a,b were first proposed by: Ojima N. Takenaka S. Seto S. Phytochemistry  1975,  14:  573 
  • The structures originally proposed8 for aspulvinones B,4 C,4 D,4 F,4 and G4 were revised by synthetic or biosynthetic correlations and an X-ray analysis in a series of communications by Knight and Pattenden, for a summary see:
  • 9a Begley MJ. Gedge DR. Knight DW. Pattenden G. J. Chem. Soc., Perkin Trans. 1  1979,  77 
  • 9b Knight DW. Pattenden G. J. Chem. Soc., Chem. Commun.  1975,  876 ; showed that synthetically per-O-methylated 2′,4,4′-trihydroxypulvinone is different from per-O-methylated aspulvinone G and deduced that aspulvinone G equals 1s
  • 9c Laboratory synthesis of per-O-methylated aspulvinone G: Knight DW. Pattenden G. J. Chem. Soc., Perkin Trans. 1  1979,  70 
  • 9d The identity of aspulvinone D with 1aa emerged from an X-ray structural analysis, and biosynthetic considerations led to establishing the correct structures of aspulvinone C ( = 1z) and aspulvinone F: Begley MJ. Knight DW. Pattenden G. Tetrahedron Lett.  1976,  17:  131 
  • 9e The identity of aspulvinone B as 1x was concluded from a synthesis of per-O-methylated 1x: Knight DW. Pattenden G. J. Chem. Soc., Chem. Commun.  1976,  635 
  • 10 Vértesy L. Burger H.-J. Kenja J. Knauf M. Kogler H. Paulus EF. Ramakrishna NVS. Swamy KHS. Vijayakumar EKS. Hammann P. J. Antibiot.  2000,  53:  677 
  • 11 Klostermeyer D. Knops L. Sindlinger T. Polborn K. Steglich W. Eur J. Org. Chem.  2000,  4:  603 
  • 12 Bernier D. Moser F. Brückner R. Synthesis  2007,  2240 
  • Benzylic alkaline metals have been condensed with dialkyl oxalates only if derived from a two-fold ester-substituted toluene (M = Li):
  • 13a Julia M. Rolando C. Vincent E. Xu JZ. Heterocycles  1989,  28:  71 
  • Or from nitrotoluenes (M = Na, K), e.g.
  • 13b Sall DJ. Arfsten AE. Bastian JA. Denney ML. Harms CS. J. Med. Chem.  1997,  40:  2843 
  • 13c Suzuki H. Gyoutoku H. Yokoo H. Shinba M. Sato Y. Yamada H. Murakami Y. Synlett  2000,  1196 
  • 13d Hume WE. Tokunaga T. Nagata R. Tetrahedron  2002,  58:  3605 
  • 14 Synthesis of 13 (R = Et, Ar = Ph) from 9 (M = MgCl, Ar = Ph) and diethyl oxalate: Dao DH. Okamura M. Akasaka T. Kawai Y. Hida K. Ohno A. Tetrahedron: Asymmetry  1998,  9:  2725 
  • Acylations of Grignard reagents by activated monoalkyl oxalates are known:
  • 15a Nimitz JS. Mosher HS. J. Org. Chem.  1981,  46:  211 
  • 15b de las Heras MA. Vaquero JJ. García-Navio JL. Alvarez-Builla J. J. Org. Chem.  1996,  61:  9009 ; we did not attempt an analogous approach to fluorine-containing hydroxycinnamates 13 (R = RF)
  • 16 Representative syntheses of 2-hydroxycinnamates 13 from arenecarbaldehydes 12 via oxazolones 10: Dalla V. Cotelle P. Catteau J.-P. Tetrahedron Lett.  1997,  38:  1577 
  • 17 Synthesis of a 2-hydroxycinnamate 13 from an arenecarbaldehyde 12 via hydantoin 11: Raap J. Nieuwenhuis S. Creemers A. Hexspoor S. Kragl U. Lugtenburg J. Eur. J. Org. Chem.  1999,  2609 
  • 18 Synthesis of a 2-hydroxycinnamate 13 from an arenecarbaldehyde 12 via a glycidic ester 14: Reimann E. Maas H.-J. Pflug T. Monatsh. Chem.  1997,  128:  995 
  • 19 Trifluoroethyl 2,3-epoxy-2-methylacrylate was obtained by an epoxidation of trifluoroethyl methacrylate with HOF: Rozen S. Kol M. J. Org. Chem.  1990,  55:  5155 
  • 20 Syntheses of cis- and trans-2-methoxycinnamate 15 (Ar = Ph, R = Y = Me) by Horner-Wadsworth-Emmons reactions of benzaldehyde: Seneci P. Leger I. Souchet M. Nadler G. Tetrahedron  1997,  53:  17097 
  • 21a Schmidt U. Langner J. Kirschbaum B. Baum C. Synthesis  1994,  1138 ; (1216 for Y = Ac)
  • 21b Burk MJ. Kalberg CS. Pizzano A. J. Am. Chem. Soc.  1998,  120:  4345 ; (1216 for Y = Bz)
  • Horner-Wadsworth-Emmons reactions between deprotonated phosphonato esters containing an OSiR3 substituent at the carbanionic center and arenecarbaldehydes 12 are also known, yet no ensuing desilylation furnished the underlying enol:
  • 22a Pujol B. Sabatier R. Driguez P.-A. Doutheau A. Tetrahedron Lett.  1992,  33:  1447 
  • 22b Boehlow TR. Harburn JJ. Spilling CD. J. Org. Chem.  2001,  66:  3111 
  • 22c Qin D. Ren RX. Siu T. Zheng C. Danishefsky SJ. Angew. Chem. Int. Ed.  2001,  40:  4709 ; Angew. Chem. 2001, 113, 4845
  • 22d Bailey KL. Molinski TF. Tetrahedron Lett.  2002,  43:  9657 
  • 22e Ogamino T. Ishikawa Y. Nishiyama S. Heterocycles  2003,  61:  73 
  • 23a Cacchi S. Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1987,  28:  3039 
  • 23b Sakamoto T. Kondo Y. Kashiwagi Y. Yamanaka H. Heterocycles  1988,  27:  257 
  • 23c Sakamoto T. Kondo Y. Yamanaka H. Heterocycles  1988,  27:  453 
  • 23d Merlic CA. Semmelhack MF. J. Organomet. Chem.  1990,  391:  C23 
  • 23e Waters SP. Kozlowski MC. Tetrahedron Lett.  2001,  42:  3567 
  • 24a Mizoroki T. Mori K. Ozaki A. Bull. Chem. Soc. Jpn.  1971,  44:  581 
  • 24b Heck RF. Nolley JP. J. Org. Chem.  1972,  37:  2320 
  • 25a Carlstroem A.-S. Frejd T. Synthesis  1989,  414 
  • 25b Carlstroem A.-S. Frejd T. J. Org. Chem.  1991,  56:  1289 
  • 25c Carlstroem A.-S. Frejd T. J. Chem. Soc., Chem. Commun.  1991,  1216 
  • 25d Carlstroem A.-S. Frejd T. Acta Chem. Scand.  1992,  46:  163 
  • 26 Monnin J. Helv. Chim. Acta  1956,  39:  1721 
  • 28 Jeffery T. Tetrahedron  1996,  52:  10113 
  • 29 In Z-configured 2-acetoxycinnamates, 3 J(13C1,1H3) = 3.0-4.5 Hz, their E-isomers have 3 J(13C1,1H3) = 9.5-10.5 Hz: Fischer P. Schweizer E. Langner J. Schmidt U. Magn. Reson. Chem.  1994,  32:  567 
  • 30a This modification was inspired by: Gürtler C. Buchwald SL. Chem. Eur. J.  1999,  5:  3107 
  • 30b For a rationalization of the beneficial effect of Cy2NMe vs. inorganic bases in Heck couplings cf. also: Hills ID. Fu GC. J. Am. Chem. Soc.  2004,  126:  13178 
  • 32 Facile oxidative degradation of 2-hydroxycinnamates 13 to the corresponding arenecarbaldehyde, especially in acidic media, has been observed by ourselves and others (e.g., ref. 16). Detailed study with methyl 2-hydroxy-4′-methoxy-cinnamate: Jefford CW. Knöpfel W. Cadby PA. Tetrahedron. Lett.  1978,  19:  3585 
  • 33a Neises B. Steglich W. Angew. Chem., Int. Ed. Engl.  1978,  17:  522 ; Angew. Chem. 1978, 90, 556
  • 33b Neises B. Steglich W. Org. Synth. Coll. Vol. VII   John Wiley & Sons; London: 1990.  p.93-95  
  • 34 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
  • 35 Kaczybura N. Brückner R. Synthesis  2007,  118 
  • 36 Hennessy EJ. Buchwald SL. Org. Lett.  2002,  4:  269 
  • 37 Method: Toussaint O. Capdevielle P. Maumy M. Synthesis  1986,  1029 
  • 38 Gill M. Kiefel MJ. Lally DA. Ten A. Aust. J. Chem.  1990,  43:  1497 
  • 39 Fatope MO. Abraham DJ. J. Med. Chem.  1987,  30:  1973 
  • 40 Method: Kajigaeshi S. Kakinami T. Moriwaki M. Watanabe M. Fujisaki S. Okamoto T. Chem. Lett.  1988,  795 
  • 41 For a recent review see: Hoarau C. Pettus TRR. Synlett  2003,  127 
  • 42 Wirth HO. Königstein O. Kern W. Justus Liebigs Ann. Chem.  1960,  634:  84 
  • 43 Edgar KJS. Falling N. J. Org. Chem.  1990,  55:  5287 
  • 44 To the best of our knowledge, there is just one ortho-selective halogen-metal exchange reaction of an aromatic compound, which contains a metal-directing substituent at C1 and halogen atoms both at C2 and C4: the ortho-selective magnesiation of 2,4-dibromoanisole with i-PrMgCl by: Nishiyama H. Isaka K. Itoh K. Ohno K. Nagase H. Matsumoto K. Yoshiwara H. J. Org. Chem.  1992,  57:  407 
  • 45 Iodine-magnesium exchange using i-PrMgCl in THF: Boymond L. Rottländer M. Cahiez G. Knochel P. Angew. Chem. Int. Ed.  1998,  37:  1701 ; Angew. Chem. 1998, 110, 1801
  • 46 BBr3-mediated deprotections of ortho-prenylated methyl phenyl ethers and subsequent in situ cyclizations giving chromanes: Eicher T. Tiefensee K. Doenig R. Pick P. Synthesis  1991,  98 ; and references therein
  • 47 Deprotection of aryl methyl ethers with LiSEt/DMF: Fentrill GI. Mirrington RN. Tetrahedron Lett.  1970,  11:  1327 
  • 48 Deprotection of aryl methyl ethers with PhSH/K2CO3/NMP: Nayak MK. Chakraborti AK. Tetrahedron Lett.  1997,  38:  8749 
  • 49 Deprotection of aryl methyl ethers with LiI in quinoline: Kirschke K. Wolff E. J. Prakt. Chem.  1995,  337:  405 
  • 50 Precedence for the chemoselective cleavage of a benzyl ether in the presence of a trisubstituted C=C double bond by catalytic hydrogenation: Barrero AF. Alvarez-Manzaneda EJ. Chahboun R. Tetrahedron Lett.  1997,  38:  8101 
  • 51 Precedence for the chemoselective cleavage of a benzyl ether in the presence of a trisubstituted C=C double bond by catalytic transfer hydrogenation: Iikubo K. Ishikawa Y. Ando N. Umezawa K. Nishiyama S. Tetrahedron Lett.  2002,  43:  291 
  • 52 Cleavage of benzyl ethers with lithium naphthalenide: Alonso E. Ramon DJ. Yus M. Tetrahedron  1997,  53:  14355 
  • 53 These conditions were inspired by the cleavage of a benzyl ether within a sensitive, C=C-containing substrate by treatment with BCl3 (CH2Cl2, -78 °C to 0 °C) and subsequent methanolysis of the resulting boronic ester (-78 °C): Williams DR. Brown DL. Benbow JW. J. Am. Chem. Soc.  1989,  111:  1923 
  • 54 Gottlieb HE. Kotlyar V. Nudelman A. J. Org. Chem.  1997,  62:  7512 
  • 55 Afonya TCA. Epelle FBM. Osman SAA. Whalley WB. J. Chem. Res., Miniprint  1985,  3301 
  • 56 Campbell AC. Maidment MS. Pick JH. Stevenson DFM. J. Chem. Soc., Perkin Trans. 1  1985,  1567 
  • 57 Bates RW. Gabel CJ. Tetrahedron Lett.  1993,  34:  3547 
27

We could also esterify trifluoroethyl pyruvate (25) to give trifluoroethyl 2-[(4-methoxyphenyl)acetoxy]acrylate (20), employing the mixed anhydride obtained from (4-meth-oxyphenyl)acetic acid, TFAA (2.0 equiv), and TsOH·H2O (cat., toluene, reflux, 12 h); however, the low yield of 20 (21%) by this route kept us from trying to shortcut our two-step synthesis of trifluoroethyl 2-(arylacetoxy)cinnamates by using the one-step alternative of a Heck coupling between iodoarenes 17 and this reagent.

31

Attempts to arylate ethyl 2-(trimethylsiloxy)acrylate (21), prepared according to: Barton D. H. R., Chern C.-Y., Jaszberenyi J. C.; Tetrahedron; 1995, 51: 1867; with 4-iodoanisole under conditions reasonably effective for ethyl 2-acetoxyacrylate (18, cf. Table [2] , entry 3) failed completely. Therefore, we did not prepare trifluoroethyl 2-(trimethylsiloxy)acrylate (22) as a potential substrate of Heck arylation