Synlett 2007(11): 1699-1702  
DOI: 10.1055/s-2007-982576
LETTER
© Georg Thieme Verlag Stuttgart · New York

Strong-Acids-Promoted Protiodeacylation of Sterically Nonhindered Alkyl Aryl Ketones

Matjaž Koželj, Andrej Petrič*
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
Fax: +386(1)2419220; e-Mail: Andrej.Petric@fkkt.uni-lj.si;
Further Information

Publication History

Received 30 April 2007
Publication Date:
25 June 2007 (online)

Abstract

In the presence of strong acids in aqueous and anhydrous media alkyl aryl ketones bearing a strong electron-releasing group in the aromatic ring undergo protiodeacylation. In a reaction with triflic acid in aromatic solvents, the transfer of the liberated acyl group to aromatic solvent molecules is observed. The effects of the nature and the position of the activating group and the strength of the acid and the solvent, on the course of this ipso-substitution were investigated.

    References and Notes

  • 1a Shogi-Jadid K. Small GW. Agdeppa ED. Kepe V. Ercoli LM. Siddhart P. Read S. Satyamurthy N. Petrič A. Huang S.-C. Barrio JR. Am. J. Geriatr. Psychiatry  2002,  24 
  • 1b Liu J. Kepe V. abjek A. Petrič A. Padgett HC. Satyamurthy N. Barrio JR. Mol. Imaging Biol.  2007,  9:  6 
  • 1c Škofic P. Dambrot C. Ko˛elj M. Golobič A. Barrio JR. Petrič A. Acta Chim. Slov.  2005,  52:  391 
  • 1d abjek A. Petrič A. Tetrahedron Lett.  1999,  40:  6077 
  • 2 Taylor R. Electrophilic Aromatic Substitution   John Willey and Sons Ltd.; Chichester: 1990.  p.130 
  • 3a Luise E. Ann. Chim. Phys.  1885,  6:  210 
  • 3b Klages A. Lickroth G. Ber. Dtsch. Chem. Ges.  1899,  32:  1549 
  • 3c Weiler M. Ber. Dtsch. Chem. Ges.  1899,  32:  1908 
  • 4a Schubert WM. J. Am. Chem. Soc.  1949,  71:  2639 
  • 4b Schubert WM. Latourette HK. J. Am. Chem. Soc.  1952,  74:  1829 
  • 5a Farooqi J. Gore PH. Tetrahedron Lett.  1977,  2983 
  • 5b Gore PH. Nassar AG. Saad EF. J. Chem. Soc., Perkin Trans. 2  1982,  983 
  • 5c Al-Ka’bi J. Farooqi J. Gore PH. Nassar AG. Saad EF. Short EL. Waters DN. J. Chem. Soc., Perkin Trans. 2  1988,  943 
  • 5d Gore PH. Moonga BS. Short EL. J. Chem. Soc., Perkin Trans. 2  1988,  485 
  • 5e Al-Ka’bi J. Gore PH. Moonga BS. J. Chem. Res., Synop.  1993,  82 
  • 6a Keumi T. Morita T. Inui Y. Teshima N. Kitajima H. Synthesis  1985,  979 
  • 6b Keumi T. Morita T. Shimada T. Teshima N. Kitajima H. Prakash GKS. J. Chem. Soc., Perkin Trans. 2  1986,  847 
  • 6c Keumi T. Morita T. Ozawa Y. Kitajima H. Bull. Chem. Soc. Jpn.  1989,  62:  599 
  • 7a Giordano C. Villa M. Annunziata R. Synth. Commun.  1990,  20:  383 
  • 7b Fromentin E. Coustard J.-M. Guisnet M. J. Mol. Catal. A: Chem.  2000,  159:  377 
  • 7c Hwang K.-Y. Rhee H.-K. React. Kinet. Catal. Lett.  2003,  79:  189 
  • 9a Olah GA. Laali K. Mehrotra AK. J. Org. Chem.  1983,  48:  3360 
  • 9b Hwang JP. Prakash GKS. Olah GA. Tetrahedron  2000,  56:  7199 
  • 10 1H NMR: δ = 2.09 (q, 2 H, J = 6.2 Hz, 3-CH2), 2.67 (t, 2 H, J = 6.2 Hz, 5-CH2), 2.90 (t, 2 H, J = 6.1 Hz, 2-CH2), 6.70 (dd, 1 H, J 1 = 8.4 Hz, J 2 = 0.9 Hz, 5-H), 6.79 (d, 1 H, J 1 = 8.4 Hz, 7-H), 7.35 (t, 1 H, J = 8.4 Hz, 6-H), 12.43 (s, 1 H, 8-OH). GC-MS: [M+] = 162; [M] = 162.185 g/mol; spectrum is identical to the literature. See: Couche E. Fkyerat A. Tabacchi R. Helv. Chim. Acta  2003,  86:  210 
  • 11 Effenberger F. Eberhard JK. Maier AH. J. Am. Chem. Soc.  1996,  118:  12572 
8

General Procedure for the Reaction with Aqueous Acid
A ketone (100 mg) was dissolved in the appropriate cosolvent (toluene, xylene, 3 mL); an acid (3 mL of 48% or 62% HBr in H2O or 1 mL of 50% TfOH in H2O) was added, and refluxed for 48 h. The reaction mixture was cooled, diluted with H2O (20 mL) and extracted with CH2Cl2 (4 × 5 mL); the combined organic phases were washed with a sat. aq solution of NaHCO3, dried over anhyd Na2SO4, and evaporated. The products were identified by 1H NMR spectroscopy and GC-MS.

12

General Procedure for the Reaction with Anhydrous Acid A ketone (100 mg) was dissolved in dry aromatic solvent (5 mL), TfOH (0.2 mL) was added, and the mixture was refluxed under argon. After 72 h the mixture was cooled, diluted with H2O (15 mL), and the organic layer was separated. The water layer was extracted with CH2Cl2 (2 × 10 mL); combined organic phases were washed with a sat. aq solution of NaHCO3, dried over anhyd Na2SO4, and evaporated. The mixture of compounds was analyzed by means of GC-MS.