References and Notes
<A NAME="RD09507ST-1A">1a</A>
Genet JP.
Thorimbert S.
Touzin AM.
Tetrahedron Lett.
1993,
34:
1159
<A NAME="RD09507ST-1B">1b</A>
Wipf P.
Miller CP.
J. Am. Chem. Soc.
1992,
114:
10975
<A NAME="RD09507ST-1C">1c</A>
Li Q.
Woods KW.
Claiborne A.
Gwaltney SL.
Barr KJ.
Liu G.
Gehrke L.
Credo RB.
Hua Hui Y.
Lee J.
Warner RB.
Kovar P.
Nukkala MA.
Zielinski NA.
Tahir SK.
Fitzgerald M.
Kim KH.
Marsh K.
Frost D.
Ng S.-C.
Rosenberg S.
Sham HL.
Bioorg. Med. Chem. Lett.
2002,
12:
465
<A NAME="RD09507ST-1D">1d</A>
Campiani C.
de Angelis M.
Armaroli S.
Fattorusso C.
Catalanotti B.
Ramunno A.
Nacci V.
Novellino E.
Grewer C.
Ionescu D.
Rauen T.
Griffiths R.
Sinclair C.
Fumagalli E.
Mennini T.
J. Med. Chem.
2001,
44:
2507
<A NAME="RD09507ST-2">2</A>
Shibamoto T.
J. Agric. Food Chem.
1980,
28:
237
<A NAME="RD09507ST-3A">3a</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
2nd ed.:
J. Wiley;
New York:
1991.
<A NAME="RD09507ST-3B">3b</A>
Kocienski PJ. In Protecting Groups
Enders D.
Noyori R.
Trost BM.
Georg Thieme Verlag;
New York:
1994.
<A NAME="RD09507ST-4A">4a</A>
Meyers AI.
Lutomski KA.
J. Am. Chem. Soc.
1982,
104:
879
<A NAME="RD09507ST-4B">4b</A>
Meyers AI.
Hangan MA.
Trefonas LM.
Baker RJ.
Tetrahedron
1983,
39:
1991
<A NAME="RD09507ST-4C">4c</A>
Green L.
Chauder B.
Snieckus V.
J. Heterocycl. Chem.
1999,
36:
1453
<A NAME="RD09507ST-5A">5a</A>
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
<A NAME="RD09507ST-5B">5b</A>
Lutomski KA.
Meyers AI. In Asymmetric Synthesis
Vol. 3:
Morisson JD.
Academic Press;
Orlando:
1984.
p.213
<A NAME="RD09507ST-6A">6a</A>
Hamada Y.
Shibata M.
Shioiri T.
Tetrahedron Lett.
1985,
26:
6501
<A NAME="RD09507ST-6B">6b</A>
Wenker H.
J. Am. Chem. Soc.
1935,
57:
1079
<A NAME="RD09507ST-6C">6c</A>
Bunnage ME.
Chernega AN.
Davies SG.
Goodwin CJ.
J. Chem. Soc., Perkin Trans. 1
1994,
2385
<A NAME="RD09507ST-6D">6d</A>
Phillips AJ.
Uto Y.
Wipf P.
Reno MJ.
Williams DR.
Org. Lett.
2000,
2:
1165
<A NAME="RD09507ST-6E">6e</A>
Wipf P.
Miller CP.
Tetrahedron Lett.
1992,
33:
907
<A NAME="RD09507ST-7A">7a</A>
Lowenthal RE.
Abiko A.
Masamune S.
Tetrahedron Lett.
1990,
31:
6005
<A NAME="RD09507ST-7B">7b</A>
Corey EJ.
Wang Z.
Tetrahedron Lett.
1993,
34:
4001
<A NAME="RD09507ST-8A">8a</A>
Bolm C.
Weickhardt K.
Zehnder M.
Ranff T.
Chem. Ber.
1991,
124:
1173
<A NAME="RD09507ST-8B">8b</A>
Clarke DS.
Wood R.
Synth. Commun.
1996,
26:
1335
<A NAME="RD09507ST-8C">8c</A>
Jnaneshwara GK.
Deshpande VH.
Lalithambika M.
Ravindranathan T.
Bedekar AV.
Tetrahedron Lett.
1998,
39:
459
<A NAME="RD09507ST-8D">8d</A>
Cwik A.
Hell Z.
Hegedüs A.
Finta Z.
Horvath Z.
Tetrahedron Lett.
2002,
43:
3985
<A NAME="RD09507ST-8E">8e</A>
Mohammadpoor-Baltork I.
Khosropour AR.
Hojati HS.
Synlett
2005,
2747
<A NAME="RD09507ST-9A">9a</A>
Neilson DG. In The Chemistry of Amidines and Imidates
Patai S.
Wiley;
London:
1975.
p.389
<A NAME="RD09507ST-9B">9b</A>
Hoppe D.
Schöllkopf U.
Angew. Chem., Int. Ed. Engl.
1970,
9:
300
<A NAME="RD09507ST-10A">10a</A>
Wuts PGM.
Northuis JM.
Kwan TA.
J. Org. Chem.
2000,
65:
9223
<A NAME="RD09507ST-10B">10b</A>
Wipf P.
Venkatraman S.
Tetrahedron Lett.
1996,
37:
4659
<A NAME="RD09507ST-10C">10c</A>
Lafargue P.
Guenot P.
Lellouche JP.
Heterocycles
1995,
41:
497
<A NAME="RD09507ST-11">11</A>
Minakata S.
Nishimura M.
Takahashi T.
Oderaotoshi Y.
Komatsu M.
Tetrahedron Lett.
2001,
42:
9019
<A NAME="RD09507ST-12">12</A>
Badiang JG.
Aube J.
J. Org. Chem.
1996,
61:
2484
<A NAME="RD09507ST-13">13</A>
Chakraborty R.
Franz V.
Bez G.
Vasadia D.
Popuri C.
Zhao C.-G.
Org. Lett.
2005,
19:
4145
<A NAME="RD09507ST-14">14</A>
Schwekendiek K.
Glorius F.
Synthesis
2006,
2996
<A NAME="RD09507ST-15">15</A>
Sayama S.
Synlett
2006,
1479
<A NAME="RD09507ST-16A">16a</A>
Wirth T.
Angew. Chem. Int. Ed.
2005,
44:
3656
<A NAME="RD09507ST-16B">16b</A>
Moriarty RM.
J. Org. Chem.
2005,
70:
2893
<A NAME="RD09507ST-16C">16c</A>
Stang PJ.
J. Org. Chem.
2003,
68:
2997
<A NAME="RD09507ST-16D">16d</A>
Zhdankin VV.
Stang P.
J. Chem. Rev.
2002,
102:
2523
<A NAME="RD09507ST-16E">16e</A>
Moriarty RM.
Prakash O.
Org. React.
2002,
57:
327
<A NAME="RD09507ST-17">17</A>
Varvoglis A.
Hypervalent Iodine in Organic Synthesis
Academic Press;
London:
1997.
Chap. 3.
p.19
<A NAME="RD09507ST-18A">18a</A>
Karade NN.
Tiwari GB.
Huple DB.
Synlett
2005,
2039
<A NAME="RD09507ST-18B">18b</A>
Karade NN.
Shirodkar SG.
Dhoot BM.
Waghmare PB.
J. Chem. Res., Synop.
2005,
274
<A NAME="RD09507ST-18C">18c</A>
Karade NN.
Tiwari GB.
Shirodkar SG.
Dhoot BM.
Synth. Commun.
2005,
35:
1197
<A NAME="RD09507ST-18D">18d</A>
Karade NN.
Budhewar VH.
Katkar AN.
Tiwari GB.
ARKIVOC
2006,
(xi):
162
<A NAME="RD09507ST-19">19</A>
Typical Experimental Procedure
A mixture of an aldehyde (1.0 mmol) and an appropriate 2-amino alcohol (1.0 mmol)
was stirred for 4 h at r.t. (Diacetoxyiodo)benzene (1.2 mmol) was then added to the
above mixture and the resulting reaction mixture was again subjected for stirring
for another 3-6 h. The progress of the reaction was monitored by TLC. After the completion
of the reaction, H2O (15 mL) was added and the mixture extracted with CH2Cl2 (2 × 15 mL). The combined organic extracts were dried over anhyd Na2SO4, concentrated in vacuo, and chromatographed to give 2-substituted oxazolines/oxazines.
Spectroscopic Data of Selected Products
2-(4-Nitrophenyl)-4,5-dihydrooxazole
Mp 157-159 °C. IR (KBr): 3028, 2971, 2894, 1649, 1602, 1528, 1464, 1349, 1268, 1092,
952, 861, 710 cm-1. 1H NMR (CDCl3): δ = 4.12 (t, J = 9.6 Hz, 2 H), 4.50 (t, J = 9.6 Hz, 2 H), 8.14 (d, J = 8.3 Hz, 2 H), 8.24 (d, J = 8.3 Hz, 2 H). LCMS [M + 1]: m/z = 193.
2-(4-Chlorophenyl)-4,5-dihydrooxazole
Mp 116-118 °C (lit.8d mp 118-119 °C). IR (KBr): 3062, 2964, 2891, 1724, 1638, 1590, 1474, 1280, 1073, 933,
824, 763 cm-1. 1H NMR (CDCl3): δ = 3.72 (t, J = 9.4 Hz, 2 H), 3.97 (t, J = 9.4 Hz, 2 H), 7.40 (d, J = 7.9 Hz, 2 H), 7.68 (d, J = 7.9 Hz, 2 H). LCMS [M + 1]: m/z = 182.
2-(4-Methoxyphenyl)-4,5-dihydrooxazole
Mp 138-139 °C. IR (KBr): 2958, 2849, 1711, 1620, 1505, 1255, 1158, 1024, 842, 775
cm-1. 1H NMR (CDCl3): δ = 3.71 (s, 3 H), 3.76 (t, J = 9.2 Hz, 2 H), 3.91 (t, J = 9.2 Hz, 2 H), 7.49 (d, J = 7.6 Hz, 2 H), 6.87 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 178.
2-(3,4,5-Trimethoxyphenyl)-4,5-dihydrooxazole
Mp 83-85 °C. IR (KBr): 2940, 2849, 1711, 1638, 1584, 1407, 1225, 1128, 988, 769 cm-1. 1H NMR (CDCl3): δ = 3.89 (m, 9 H), 4.07 (t, J = 9.3 Hz, 2 H), 4.43 (t, J = 9.3 Hz, 2 H), 6.97 (s, 1 H), 7.13 (s, 1 H). LCMS [M + 1]: m/z = 238.
2-(4-Tolyl)-4,5-dihydrooxazole
Mp 143-144 °C (lit.8d mp 144-145 °C). IR (KBr): 2928, 2879, 2855, 1650, 1596, 1389, 1286, 1055, 969, 811
cm-1. 1H NMR (CDCl3): δ = 2.46 (s, 3 H), 3.75 (t, J = 9.3 Hz, 2 H), 3.91 (t, J = 9.3 Hz, 2 H), 7.63 (d, J = 7.4 Hz, 2 H), 7.22 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 162.
4-Ethyl-4,5-dihydro-2-(4-methoxyphenyl)oxazole
Liquid. IR (KBr): 3068, 2964, 2873, 2855, 1645, 1489, 1268, 1085, 818 cm-1. 1H NMR (CDCl3): δ = 0.92 (t, J = 9.1 Hz, 3 H), 1.36 (m, 2 H), 3.86 (s, 3 H), 3.97 (d, J = 9.2 Hz, 2 H), 4.14 (m, 1 H), 6.91 (d, J = 7.5 Hz, 2 H), 7.49 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 206.
2-(4-Methoxyphenyl)-5,6-dihydro-4
H
-[1,3]-oxazine
Liquid. IR (KBr): 3012, 2958, 1637, 1602, 1510, 1358, 1307, 1283, 1273, 1256 cm-1. 1H NMR (CDCl3): δ = 1.96 (quin, J = 5.8 Hz, 2 H), 3.58 (t, J = 5.4 Hz, 2 H), 3.81 (s, 3 H), 4.37 (t, J = 5.4 Hz, 2 H), 6.89 (d, J = 9.4 Hz, 2 H), 7.87 (d, J = 9.4 Hz, 2 H). LCMS [M + 1]: m/z = 192.
2-(4-Nitrophenyl)-5,6-dihydro-4
H
-[1,3]-oxazine
Mp 143-144 °C (lit.22 mp 145-146 °C). 1H NMR (CDCl3): δ = 1.99 (quin, J = 5.8 Hz, 2 H), 3.66 (t, J = 5.6 Hz, 2 H), 4.37 (t, J = 5.6 Hz, 2 H), 8.07 (d, J = 9.2 Hz, 2 H), 8.22 (d, J = 9.3 Hz, 2 H). LCMS [M + 1]: m/z = 207.
<A NAME="RD09507ST-20A">20a</A>
Snieckus V.
Chem. Rev.
1990,
90:
879
<A NAME="RD09507ST-20B">20b</A>
Martinek T.
Lazar L.
Fulop F.
Riddell FG.
Tetrahedron
1998,
54:
12887
<A NAME="RD09507ST-20C">20c</A>
Agami C.
Comesse S.
Kadouri-Puchot C.
J. Org. Chem.
2002,
67:
1496
<A NAME="RD09507ST-21">21</A>
When the reaction mixture of cinnamaldehyde and 2-amino-2-methyl-1-propanol was stirred
in the absence of DIB, the immediate precipitation of 2-styryloxazolidine was observed.
This product was recrystallized from PE and subjected to LCMS analysis which showed
a molecular ion peak [M + 1] at 204 corresponding to the formation of 4,4-dimethyl-2-styryloxazolidine.
The reaction of 4,4-dimethyl-2-styryloxazolidine (1 mmol) with DIB (1.2 mmol) in CHCl3 (10 mL) was independently carried out at r.t. stirring for another 3 h. After usual
reaction workup, the formation of 4,5-dihydro-4,4-dimethyl-2-styryloxazole was realized
in 38% yield.
<A NAME="RD09507ST-22">22</A>
Katritzky AR.
Cai C.
Suzuki K.
Singh SK.
J. Org. Chem.
2004,
69:
811