References and Notes
<A NAME="RY02006ST-1A">1a</A>
Kirsch P.
Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications
Wiley-VCH;
Weinheim:
2004.
<A NAME="RY02006ST-1B">1b</A>
Hiyama T.
Kanie K.
Kusumoto T.
Morizawa Y.
Shimizu M.
Organofluorine Compounds: Chemistry and Applications
Springer;
Berlin:
2000.
<A NAME="RY02006ST-1C">1c</A>
Biomedical Frontiers of Fluorine Chemistry
Ojima I.
McCarthy JR.
Welch JT.
ACS Symposium Series 639, American Chemical Society;
Washington/DC:
1996.
<A NAME="RY02006ST-2A">2a</A>
Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions
Ramachandran PV.
ACS Symposium Series 746, American Chemical Society;
Washington/DC:
2000.
<A NAME="RY02006ST-2B">2b</A>
Mikami K.
Itoh Y.
Yamanaka M.
Chem. Rev.
2004,
104:
1
<A NAME="RY02006ST-2C">2c</A>
Iseki K.
Tetrahedron
1998,
54:
13887
<A NAME="RY02006ST-3A">3a</A>
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
<A NAME="RY02006ST-3B">3b</A>
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
<A NAME="RY02006ST-3C">3c</A>
Pihko PM.
Angew. Chem. Int. Ed.
2006,
45:
544
<A NAME="RY02006ST-4A">4a</A>
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359
<A NAME="RY02006ST-4B">4b</A>
Kim DY.
Park EJ.
Org. Lett.
2002,
4:
545
<A NAME="RY02006ST-4C">4c</A>
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
<A NAME="RY02006ST-4D">4d</A>
Shibata N.
Kohno J.
Takai K.
Ishimaru T.
Nakamura S.
Toru T.
Kanemasa S.
Angew. Chem. Int. Ed.
2005,
44:
4204
<A NAME="RY02006ST-4E">4e</A>
Kim HR.
Kim DY.
Tetrahedron Lett.
2005,
46:
3115
<A NAME="RY02006ST-4F">4f</A>
Bernardi L.
Jørgensen KA.
Chem. Commun.
2005,
1324
<A NAME="RY02006ST-4G">4g</A>
Kim SM.
Kim HR.
Kim DY.
Org. Lett.
2005,
7:
2309
<A NAME="RY02006ST-4H">4h</A>
Suzuki S.
Furuno H.
Yokoyama Y.
Inanaga J.
Tetrahedron: Asymmetry
2006,
17:
504
<A NAME="RY02006ST-5A">5a</A>
Enders D.
Hüttl MRM.
Synlett
2005,
991
<A NAME="RY02006ST-5B">5b</A>
Marigo M.
Fielenbach D.
Braunton A.
Kjærsgaard A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
3703
<A NAME="RY02006ST-5C">5c</A>
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
<A NAME="RY02006ST-5D">5d</A>
Beeson TD.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
8826
<A NAME="RY02006ST-5E">5e</A>
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
<A NAME="RY02006ST-6A">6a</A>
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
<A NAME="RY02006ST-6B">6b</A>
Hamashima Y.
Suzuki T.
Takano H.
Shimura Y.
Tsuchiya Y.
Moriya K.
Goto T.
Sodeoka M.
Tetrahedron
2006,
62:
7168
<A NAME="RY02006ST-6C">6c</A>
Hamashima Y.
Takano H.
Hotta D.
Sodeoka M.
Org. Lett.
2003,
5:
3225
<A NAME="RY02006ST-6D">6d</A>
Hamashima Y.
Suzuki T.
Shimura Y.
Shimizu T.
Umebayashi N.
Tamura T.
Sasamoto N.
Sodeoka M.
Tetrahedron Lett.
2005,
46:
1447
<A NAME="RY02006ST-6E">6e</A>
Suzuki T.
Goto T.
Hamashima Y.
Sodeoka M.
J. Org. Chem.
2007,
72:
246
<A NAME="RY02006ST-6F">6f</A>
Hamashima Y.
Suzuki T.
Takano H.
Shimura Y.
Sodeoka M.
J. Am. Chem. Soc.
2005,
127:
10164
<A NAME="RY02006ST-6G">6g</A> For preparation of the Pd complexes, see:
Fujii A.
Hagiwara E.
Sodeoka M.
J. Am. Chem. Soc.
1999,
121:
5450
<A NAME="RY02006ST-7">7</A>
Hamashima Y.
Sodeoka M.
Synlett
2006,
1467
<A NAME="RY02006ST-8">8</A> α-Fluorophosphonates have been used as mimics of a phosphate moiety. For a general
review, see:
Berkowitz DB.
Bose M.
J. Fluorine Chem.
2001,
112:
13
Ru:
<A NAME="RY02006ST-9A">9a</A>
Murahashi S.-I.
Naoto T.
Taki H.
Mizuno M.
Takaya H.
Komiya S.
Mizuno Y.
Oyasato N.
Hiraoka M.
Hirano M.
Fukuoka A.
J. Am. Chem. Soc.
1995,
117:
12436
Rh:
<A NAME="RY02006ST-9B">9b</A>
Sawamura M.
Hamashima H.
Ito Y.
J. Am. Chem. Soc.
1992,
114:
8295
<A NAME="RY02006ST-9C">9c</A>
Kuwano R.
Miyazaki H.
Ito Y.
J. Organomet. Chem.
2000,
603:
18
Pd:
<A NAME="RY02006ST-9D">9d</A>
Takenaka K.
Uozumi Y.
Org. Lett.
2004,
6:
1833 ; and references therein
<A NAME="RY02006ST-10">10</A>
Iorga B.
Ricard L.
Savignac P.
J. Chem. Soc., Perkin Trans. 1
2000,
3311
<A NAME="RY02006ST-11">11</A>
For detailed discussion on the effect of additional organic bases, see ref. 6e.
Effective combination of Lewis acids and amines were previously reported. For examples,
see:
<A NAME="RY02006ST-12A">12a</A>
Itoh K.
Kanemasa S.
J. Am. Chem. Soc.
2002,
124:
13394
<A NAME="RY02006ST-12B">12b</A>
Barnes DM.
Ji J.
Fickes MG.
Fitzgerald MA.
King SA.
Morton HE.
Plagge FA.
Preskill M.
Wagaw SH.
Wittenberger SJ.
Zhang J.
J. Am. Chem. Soc.
2002,
124:
13097
<A NAME="RY02006ST-12C">12c</A>
Kumagai N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
13632
<A NAME="RY02006ST-13">13</A>
Representative Procedure
To a mixture of α-cyanophosphonate 1a (25.3 mg, 0.1 mmol), NFSI (47.2 mg, 0.15 mmol), and the Pd complex 5a (4.5 mg, 2.5 mol%) was added EtOH (0.2 mL) at -20 °C. At this temperature, 2,6-lutidine
(12 µL, 0.1 mmol) was added dropwise, and the reaction mixture was stirred until complete
consumption of the starting material (TLC, hexane-EtOAc = 2:1). Then, sat. aq NH4Cl was added for quenching, and the products were extracted with EtOAc. Usual workup,
followed by flash column chromatography (hexane-EtOAc = 2:1), afforded the fluorinated
product 3a as a colorless oil.
Compound 3a: 1H NMR (400 MHz, CDCl3): δ = 1.30 (t, J = 7.1 Hz, 3 H), 1.35 (t, J = 7.1 Hz, 3 H), 4.14-4.32 (m, 4 H), 7.46-7.51 (m, 3 H), 7.63-7.68 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 16.1 (d, J = 4.9 Hz), 16.2 (d, J = 5.8 Hz), 65.7 (d, J = 7.4 Hz), 65.9 (d, J = 7.4 Hz), 87.6 (dd, J = 173.5, 195.8 Hz), 114.4 (d, J = 28.0 Hz), 126.0 (t-like, J = 4.9 Hz), 128. 7 (d, J = 1.6 Hz), 130.1 (dd, J = 1.7, 20.7 Hz), 130.5. 19F NMR (376 MHz, CDCl3, std: TFA): δ = -90.95 (d, J = 87.2 Hz). HPLC (DAICEL CHIRALPAK AD-H, n-hexane-IPA = 99:1, 1.0 mL/min, 254 nm): t
R (major) = 43.0 min., t
R (minor) = 47.0 min.
<A NAME="RY02006ST-14">14</A> For preparation of racemic α-fluoro-α-cyanophosphonates by phosphorylation reaction,
see:
Yokoyama Y.
Mochida K.
Synthesis
1999,
1319