Abstract
Enantioselective electrophilic fluorination of β-keto esters with Selectfluor® catalyzed by DNA and a nonchiral ligand-Cu(II) complex is presented. The chirality
transfer from DNA to the substrate appears to be caused by the intercalation or groove
binding of the substrate-ligand-Cu(II) complex to DNA.
Key words
fluorine - DNA - asymmetric catalysis - copper - halogenation
References and Notes
<A NAME="RY01706ST-1A">1a </A>
Biomedicinal Aspects of Fluorine Chemistry
Filler R.
Kobayashi Y.
Elsevier Biomedical Press and Kodansha Ltd;
New York, Tokyo:
1982.
<A NAME="RY01706ST-1B">1b </A>
Biomedical Frontiers of Fluorine Chemistry
Ojima I.
McCarthy JR.
Welch JT.
ACS Symposium Series 639, American Chemical Society;
Washington DC:
1996.
<A NAME="RY01706ST-1C">1c </A>
Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications
Filler R.
Kobayashi Y.
Yagupolskii LM.
Elsevier;
Amsterdam:
1993.
<A NAME="RY01706ST-2">2 </A>
Thayer AM.
Chem. Eng. News
2006,
84 (23):
15
<A NAME="RY01706ST-3">3 </A>
O’Hagan D.
Harper DB.
Nat. Prod. Rep.
1994,
11:
123
<A NAME="RY01706ST-4A">4a </A>
Chirality in Drug Design and Development
Indra KR.
Mehvar R.
Marcel Dekker, Inc.;
New York:
2004.
<A NAME="RY01706ST-4B">4b </A>
Triggle DJ.
Chirality in Natural and Applied Science
Lough WJ.
Wainer IW.
Blackwell Publishing;
Oxford, UK:
2002.
p.109
<A NAME="RY01706ST-4C">4c </A>
Mansfield P.
Henry D.
Tonkin A.
Clin. Pharmacokin.
2004,
43:
287
<A NAME="RY01706ST-5A">5a </A>
Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenges
and Biomedical Targets
Soloshonok VA.
Wiley;
New York:
1999.
<A NAME="RY01706ST-5B">5b </A>
Asymmetric Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions
Ramachandran PV.
ACS Symposium Series 746, American Chemical Society;
Washington DC:
2000.
<A NAME="RY01706ST-5C">5c </A>
Chambers RD.
Fluorine in Organic Chemistry
Blackwell Publishing;
Oxford, UK:
2004.
<A NAME="RY01706ST-5D">5d </A>
Kirsch P.
Modern Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
<A NAME="RY01706ST-6A">6a </A>
Davis FA.
Qi H.
Sundarababu G.
Enantiocontrolled Synthesis of Fluoro-Organic Compounds
Soloshonok VA.
John Wiley and Sons;
New York:
1999.
p.1-32
<A NAME="RY01706ST-6B">6b </A>
Muniz K.
Angew. Chem. Int. Ed.
2001,
40:
1653
<A NAME="RY01706ST-6C">6c </A>
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
<A NAME="RY01706ST-6D">6d </A>
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
6119
<A NAME="RY01706ST-6E">6e </A>
France S.
Weatherwax A.
Lectka T.
Eur. J. Org. Chem.
2005,
475
<A NAME="RY01706ST-6F">6f </A>
Oestreich M.
Angew. Chem. Int. Ed.
2005,
44:
2324
<A NAME="RY01706ST-6G">6g </A>
Pihko PM.
Angew. Chem. Int. Ed.
2006,
45:
544
<A NAME="RY01706ST-6H">6h </A>
Bobbio C.
Gouverneur V.
Org. Biomol. Chem.
2006,
2065
<A NAME="RY01706ST-6I">6i </A>
Hamashima Y.
Sodeoka M.
Synlett
2006,
1467
<A NAME="RY01706ST-6J">6j </A>
Shibata N.
Farumashia
2003,
39:
666
<A NAME="RY01706ST-6K">6k </A>
Shibata N.
J. Synth. Org. Chem., Jpn.
2006,
64:
14
<A NAME="RY01706ST-7A">7a </A>
Shibata N.
Kohno J.
Takai K.
Ishimaru T.
Nakamura S.
Toru T.
Kanemasa S.
Angew. Chem. Int. Ed.
2005,
44:
4204
<A NAME="RY01706ST-7B">7b </A>
Shibata N.
Suzuki E.
Takeuchi Y.
J. Am. Chem. Soc.
2000,
122:
10728
<A NAME="RY01706ST-7C">7c </A>
Shibata N.
Suzuki E.
Asahi T.
Shiro M.
J. Am. Chem. Soc.
2001,
123:
7001
<A NAME="RY01706ST-7D">7d </A>
Shibata N.
Ishimaru T.
Suzuki E.
Kirk KL.
J. Org. Chem.
2003,
68:
2494
<A NAME="RY01706ST-7E">7e </A>
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
<A NAME="RY01706ST-7F">7f </A>
Shibata N.
Ishimaru T.
Nakamura M.
Toru T.
Synlett
2004,
2509
<A NAME="RY01706ST-7G">7g </A>
Fukuzumi T.
Shibata N.
Sugiura M.
Nakamura S.
Toru T.
J. Fluorine Chem.
2006,
127:
548
<A NAME="RY01706ST-8A">8a </A>
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359
<A NAME="RY01706ST-8B">8b </A>
Cahard D.
Audouard C.
Plaquevent J.-C.
Roques N.
Org. Lett.
2000,
2:
3699
<A NAME="RY01706ST-8C">8c </A>
Greedy B.
Paris J.-M.
Vidal T.
Gouverneur V.
Angew. Chem. Int. Ed.
2003,
42:
3291
<A NAME="RY01706ST-8D">8d </A>
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
<A NAME="RY01706ST-8E">8e </A>
Hamashima Y.
Suzuki T.
Takano H.
Shimura Y.
Sodeoka M.
J. Am. Chem. Soc.
2005,
127:
10164
<A NAME="RY01706ST-8F">8f </A>
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
<A NAME="RY01706ST-8G">8g </A>
Ma J.-A.
Cahard D.
J. Fluorine Chem.
2004,
125:
1357
<A NAME="RY01706ST-8H">8h </A>
Enders D.
Hüttl MRM.
Synlett
2005,
991
<A NAME="RY01706ST-8I">8i </A>
Marigo M.
Fielenbach D.
Braunton A.
Kjærsgaard A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
3703
<A NAME="RY01706ST-8J">8j </A>
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
<A NAME="RY01706ST-8K">8k </A>
Beeson TD.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
8826
<A NAME="RY01706ST-9A">9a </A>
O’Hagan D.
Schaffrath C.
Cobb SL.
Hamilton JTG.
Murphy CD.
Nature (London)
2002,
416:
279
<A NAME="RY01706ST-9B">9b </A>
Dong C.
Huang F.
Deng H.
Schaffrath C.
Spencer JB.
O’Hagan D.
Naismith JH.
Nature (London)
2004,
427:
561
<A NAME="RY01706ST-10">10 </A>
Thayer AM.
Chem. Eng. News
2006,
84 (33):
15
<A NAME="RY01706ST-11A">11a </A>
Mamidi RR.
Shibata N.
Kondo Y.
Nakamura S.
Toru T.
Angew. Chem. Int. Ed.
2006,
45:
8163
<A NAME="RY01706ST-11B">11b </A>
Fukuzumi T.
Shibata N.
Sugiura M.
Yasui H.
Nakamura S.
Toru T.
Angew. Chem. Int. Ed.
2006,
45:
4973
<A NAME="RY01706ST-11C">11c </A>
Shibata N.
Matsunaga M.
Fukuzumi T.
Nakamura S.
Toru T.
J. Am. Chem. Soc.
2005,
127:
1374
<A NAME="RY01706ST-11D">11d </A>
Shibata N.
Matsunaga M.
Nakagawa M.
Fukuzumi T.
Nakamura S.
Toru T.
Synlett
2005,
1699
<A NAME="RY01706ST-11E">11e </A>
Shibata N.
Tarui T.
Doi Y.
Kirk KL.
Angew. Chem. Int. Ed.
2001,
40:
4461
<A NAME="RY01706ST-12A">12a </A>
Sinden RS.
DNA Structure and Function
Academic Press;
New York:
1994.
<A NAME="RY01706ST-12B">12b </A>
Gray DM.
Ratliff RL.
Vaughan MR.
Methods Enzymol.
1992,
211:
389
<A NAME="RY01706ST-12C">12c </A>
Andrushchenko V.
Tsankov D.
Wieser H.
J. Mol. Struct.
2003,
661:
541
<A NAME="RY01706ST-13A">13a </A>
Silverman SK.
Org. Biomol. Chem.
2004,
2:
2701
<A NAME="RY01706ST-13B">13b </A>
Peracchi A.
ChemBioChem.
2005,
6:
1316
<A NAME="RY01706ST-13C">13c </A>
Lu Y.
Chem. Eur. J.
2002,
8:
4589
<A NAME="RY01706ST-13D">13d </A>
May JP.
Ting R.
Lermer L.
Thomas JM.
Roupioz Y.
Perrin DM.
J. Am. Chem. Soc.
2004,
126:
4145
<A NAME="RY01706ST-14A">14a </A>
Roelfes G.
Feringa BL.
Angew. Chem. Int. Ed.
2005,
44:
3230
<A NAME="RY01706ST-14B">14b </A>
Roelfes G.
Boersma AJ.
Feringa BL.
Chem. Commun.
2006,
635
<A NAME="RY01706ST-14C">14c </A>
King AG.
J. Chem. Educ.
2006,
83:
13
<A NAME="RY01706ST-15">15 </A>
Tanaka K.
Okahata Y.
J. Am. Chem. Soc.
1996,
118:
10679
<A NAME="RY01706ST-16">16 </A>
Navarro M.
Cisneros-Fajardo EJ.
Sierralta A.
Fernández-Mestre M.
Silva P.
Arrieche D.
Marchán E.
J. Biol. Inorg. Chem.
2003,
8:
401
<A NAME="RY01706ST-17">17 </A>
Both st-DNA and calf thymus DNA are too large to be discussed in detail the transition-state
structure of the immediate. Experiments using synthetic, structurally well-defined
DNAs are now under investigations to confirm the actual transition-state structure.
<A NAME="RY01706ST-18A">18a </A>
Evans DA.
Johnson JS.
Burgey CS.
Campos CR.
Tetrahedron Lett.
1999,
40:
2879
<A NAME="RY01706ST-18B">18b </A>
Evans DA.
Johnson JS.
Olhava EJ.
J. Am. Chem. Soc.
2000,
122:
1635
<A NAME="RY01706ST-18C">18c </A>
Thorhauge J.
Roberson M.
Hazell RG.
Jørgensen KA.
Chem. Eur. J.
2002,
8:
1888
All buffer solutions were prepared according to the literature. See:
<A NAME="RY01706ST-19A">19a </A>
Good NE.
Winget GD.
Winter W.
Connolly TN.
Izawa S.
Singh RMM.
Biochemistry
1966,
5:
467
<A NAME="RY01706ST-19B">19b </A>
Ferguson WJ.
Braunschweiger KI.
Braunschweiger WR.
Smith JR.
McCormick JJ.
Wasmann CC.
Jarvis NP.
Bell DH.
Good NE.
Anal. Biochem.
1980,
104:
300