Synlett 2007(6): 0986-0988  
DOI: 10.1055/s-2007-973859
LETTER
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Catalysis of Intramolecular Morita-Baylis-Hillman and Related Reactions by Chiral Rhenium-Containing Phosphines of the Formula (η5-C5H5)Re(NO)(PPh3)(CH2PAr2)

Florian Seidel, John A. Gladysz*
Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
e-Mail: [email protected];
Further Information

Publication History

Received 7 December 2006
Publication Date:
26 March 2007 (online)

Abstract

The racemic rhenium-containing phosphine (η5-C5H5)Re(NO)(PPh3)(CH2PPh2) catalyzes intramolecular Morita-Baylis-Hillman reactions of four R(CO)CH=CH(CH2) n CH2CHO species (n = 1 or 2; R = Ph, S-i-Pr, p-Tol, Me) in benzene or chlorobenzene at 20 °C. The products R(CO)CH=CH(CH2) n CH2CHOH are isolated in 88-99% yields and 38-74% ee when enantiopure S-configured catalyst is used. Similar reactions of R(CO)CH=CHCH2CH2CH=CH(CO)R (R = Ph, S-i-Pr) give R(CO)C=CHCH2CH2CHCH2(CO)R in 63-87% yields and 42-56% ee.

    References and Notes

  • 1 Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 2 Methot JL. Roush WR. Adv. Synth. Catal.  2004,  346:  1035 
  • Lead references to two large families within this extensive literature:
  • 3a Grabulosa A. Granell J. Muller G. Coord. Chem. Rev.  2007,  251:  25 
  • 3b Gómez Arrayás R. Adrio J. Carretero JC. Angew. Chem. Int. Ed.  2006,  45:  7674 ; Angew. Chem. 2006, 118, 7836
  • 4a Buhro WE. Zwick BD. Georgiou S. Hutchinson JP. Gladysz JA. J. Am. Chem. Soc.  1988,  110:  2427 
  • 4b Zwick BD. Dewey MA. Knight DA. Buhro WE. Arif AM. Gladysz JA. Organometallics  1992,  11:  2673 
  • 4c Giner Planas J. Hampel F. Gladysz JA. Chem. Eur. J.  2005,  11:  1402 
  • 5a Kromm K. Zwick BD. Meyer O. Hampel F. Gladysz JA. Chem. Eur. J.  2001,  7:  2015 
  • 5b Kromm K. Hampel F. Gladysz JA. Organometallics  2002,  21:  4264 
  • 5c Kromm K. Osburn PL. Gladysz JA. Organometallics  2002,  21:  4275 
  • 6a Eichenseher S. Delacroix O. Kromm K. Hampel F. Gladysz JA. Organometallics  2005,  24:  245 
  • 6b Kromm K. Eichenseher S. Prommesberger M. Hampel F. Gladysz JA. Eur. J. Inorg. Chem.  2005,  2983 
  • 6c Friedlein FK. Hampel F. Gladysz JA. Organometallics  2005,  24:  4103 
  • 7 Brunner H. Angew. Chem. Int. Ed.  1999,  38:  1194 ; Angew. Chem. 1999, 111, 1248
  • 8 Delacroix O. Gladysz JA. Chem. Commun.  2003,  665 
  • 9 Scherer A. Gladysz JA. Tetrahedron Lett.  2006,  47:  6335 
  • 10 Yeo JE. Yang X. Kim HJ. Koo S. Chem. Commun.  2004,  236 
  • 11a Richards EL. Murphy PJ. Dinon F. Fratucello S. Brown PM. Gelbrich T. Hursthouse MB. Tetrahedron  2001,  57:  7771 
  • 11b Roth F. Gygax P. Fráter G. Tetrahedron Lett.  1992,  33:  1045 
  • 12 Suwa T. Shibata I. Nishino K. Baba A. Org. Lett.  1999,  1:  1579 
  • General Procedures
  • 13a

    Racemic catalysts: A Schlenk flask was charged with the educt (typically 0.060-0.080 g). Then C6H5Cl or C6H6 solutions that were 0.0125 M in ClCH2CH2Cl (reference for 1H NMR integration) were added to give 0.100 M educt solutions. These were equilibrated to 20 °C using a cryostat. Solutions of C6H5Cl or C6H6 that were 0.0100 M in catalyst and 0.0125 M in ClCH2CH2Cl were cooled to 0 °C. Equal volumes, corresponding to 10 mol% loading, were added dropwise over ca. 5 min to the educt solutions. An aliquot (0.6 mL) was transferred to an NMR tube, and 1H NMR spectra were periodically recorded. When the reaction was complete (or no further reaction took place), 5 volumes of hexane were added with stirring. The mixture was filtered through a short plug of silica gel (removing catalyst), and the plug was washed with hexane-EtOAc (9:1 v/v). The solvent was removed from the filtrates by rotary evaporation. Reactions conducted in C6H5Cl were further purified by silica gel column chromatography, except in the case of 5a.

  • 13b

    Enantiopure catalysts: The preceding reactions were repeated on 0.0010-0.0020 g scales. The products were analyzed by HPLC using Chiralcel OD, Chiralpak AD-H or Chiralpak AS-H columns.

  • 15 Graff M. Dilaimi AA. Seguineau P. Rambaud M. Villieras J. Tetrahedron Lett.  1986,  27:  1577 
  • 16a Brown MB. Käppel N. Murphy PJ. Tetrahedron Lett.  2002,  43:  8707 
  • 16b Wang L.-C. Luis AL. Agapiou K. Jang H.-Y. Krische MJ. J. Am. Chem. Soc.  2002,  124:  2402 
  • 17 Allman T. Goel RG. Can. J. Chem.  1982,  60:  716 
  • 18 Bush RC. Angelici RJ. Inorg. Chem.  1988,  27:  681 
  • 19 Wang J.-C. Ng S.-S. Krische MJ. J. Am. Chem. Soc.  2003,  125:  3682 ; and references therein
  • 20 Aroyan CE. Vasbinder MM. Miller SJ. Org. Lett.  2005,  7:  3849 
  • 21 Fu GC. Acc. Chem. Res.  2004,  37:  542 
  • 22 Pereira SI. Adrio J. Silva AMS. Carretero JC. J. Org. Chem.  2005,  70:  10175 
14

All products were characterized by NMR (1H, 13C) and IR spectroscopy, and these data are available from the authors upon request; 3a,d and 5a have been reported previously.11a,15,16
Typical data (3b): 1H NMR (400 MHz, CDCl3): δ = 1.39 [d, (CH 3)2CH, 3 J(H,H) = 7.2 Hz, 6 H], 1.82-1.91 (m, C=CHCHH′, 1 H), 2.27-2.46 (2 m, C=CHCHH′, CHH′CHOH, 2 H) 2.62-2.73 (m, CHH′CHOH, 1 H), 2.78 (br s, CHOH, 1 H), 3.74 [sep, 3 J(H,H) = 7.2 Hz, (CH3)2CH, 1 H], 5.13-5.16 (m, CHOH, 1 H), 6.89 [dd, 3 J(H,H) = 2.8, 2.8 Hz, C=CHCHH′, 1 H] ppm. 13C{1H} NMR (101 MHz, CDCl3): δ = 23.0 [s, ( C H3)2CH], 30.9 (s, C=CHCH2), 31.8 (s, CH2CHOH), 34.3 [s, (CH3)2 CH], 75.7 (s, CHOH), 144.4 [s, (CO)C=CH], 145.2 [s, (CO)C=CH], 190.1 [s, (CO)C=CH] ppm. IR (thin film): 1613 (s, νC=C), 1648 (s, νCO), 3450 (br, νOH) cm-1.