References and Notes
<A NAME="RW19806ST-1A">1a</A>
Shore NE. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
Oxford:
1991.
p.1129-1162
<A NAME="RW19806ST-1B">1b</A>
Grotjahn DB. In
Comprehensive Organometallic Chemistry II
Vol. 12:
Hegedus LS.
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon;
Oxford:
1995.
p.741-770
<A NAME="RW19806ST-1C">1c</A>
Lautens M.
Klute W.
Tam W.
Chem. Rev.
1996,
96:
49
<A NAME="RW19806ST-1D">1d</A>
Frühauf H.-W.
Chem. Rev.
1997,
97:
523
<A NAME="RW19806ST-1E">1e</A>
Yamamoto Y.
Ishii J.
Nishiyama H.
Itoh K.
J. Am. Chem. Soc.
2004,
126:
3712
<A NAME="RW19806ST-1F">1f</A>
Meriwether LS.
Colthup EC.
Kennerly GW.
Reusch RN.
J. Org. Chem.
1961,
26:
5155
<A NAME="RW19806ST-2A">2a</A>
Saito S.
Yamamoto Y.
Chem. Rev.
2000,
100:
2901
<A NAME="RW19806ST-2B">2b</A>
Ardizzoia GA.
Brenna S.
LaMonica G.
Maspero A.
Masciocchi N.
J. Organomet. Chem.
2002,
649:
173
<A NAME="RW19806ST-2C">2c</A>
Kotha T.
Brahmachary E.
Lahiri K.
Eur. J. Org. Chem.
2005,
4741
<A NAME="RW19806ST-2D">2d</A>
Xi C.
Chen C.
Lin J.
Hong X.
Org. Lett.
2005,
7:
347
<A NAME="RW19806ST-2E">2e</A>
Zhou L.
Jiang H.
Huang J.
Tang J.
Chin. J. Org. Chem.
2006,
26:
1
<A NAME="RW19806ST-3A">3a</A>
Pigge FC.
Zheng Z.
Tetrahedron Lett.
2001,
42:
8259
<A NAME="RW19806ST-3B">3b</A>
Pigge FC.
Ghasedi F.
Zheng Z.
Rath NP.
Nichols G.
Chickos JS.
J. Chem. Soc., Perkin Trans. 2
2000,
2458
<A NAME="RW19806ST-3C">3c</A>
Pigge FC.
Ghasedi F.
Rath NP.
Tetrahedron Lett.
1999,
40:
8045
<A NAME="RW19806ST-3D">3d</A>
Matsuda K.
Nakamura N.
Iwamura H.
Chem. Lett.
1994,
1765
<A NAME="RW19806ST-3E">3e</A>
Balasubramanian K.
Selvaraj S.
Venkataramani PS.
Synthesis
1980,
29
<A NAME="RW19806ST-3F">3f</A>
Elghamry I.
Synthesis
2003,
2301
<A NAME="RW19806ST-3G">3g</A>
Pena MA.
Sestelo JP.
Sarandeses LA.
Synthesis
2005,
485
<A NAME="RW19806ST-3H">3h</A>
Abdel-Khalik MM.
Elnagdi MH.
Synth. Commun.
2002,
32:
159
<A NAME="RW19806ST-3I">3i</A>
Almazroa S.
Elnagdi MH.
El-Din AMS.
J. Heterocycl. Chem.
2004,
41:
267
<A NAME="RW19806ST-4">4</A>
Yang J.
Verkade G.
J. Am. Chem. Soc.
1998,
120:
6834
<A NAME="RW19806ST-5A">5a</A>
Modern Arene Chemistry
Astruc D.
Wiley-VCH;
Weinheim:
2002.
<A NAME="RW19806ST-5B">5b</A>
The Chemistry of Phenols
Rappoport Z.
Wiley-VCH;
New York:
2003.
<A NAME="RW19806ST-6A">6a</A>
Nefzi A.
Ostresh JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
<A NAME="RW19806ST-6B">6b</A>
Simon C.
Constantieux T.
Rodriguez J.
Eur. J. Org. Chem.
2004,
4957
<A NAME="RW19806ST-6C">6c</A>
Li C.
Chem. Rev.
2005,
105:
3095
<A NAME="RW19806ST-7A">7a</A>
Hanédanian M.
Loreau O.
Sawicki M.
Taran F.
Tetrahedron
2005,
61:
2287
<A NAME="RW19806ST-7B">7b</A>
Trost BM.
Dake GR.
J. Am. Chem. Soc.
1997,
119:
7595
<A NAME="RW19806ST-7C">7c</A>
Hanédanian M.
Loreau O.
Taran F.
Mioskowski C.
Tetrahedron Lett.
2004,
45:
7035
<A NAME="RW19806ST-7D">7d</A>
Xue S.
Zhou Q.
Zheng X.
Synth. Commun.
2005,
35:
3027
<A NAME="RW19806ST-8A">8a</A>
Yamada YMA.
Ikegami S.
Tetrahedron Lett.
2000,
41:
2165
<A NAME="RW19806ST-8B">8b</A>
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
<A NAME="RW19806ST-8C">8c</A>
Shi M.
Liu YH.
Org. Biomol. Chem.
2006,
4:
1468
For selected recent reactions catalyzed by amines, see:
<A NAME="RW19806ST-9A">9a</A>
Wang Y.
Cui S.
Lin X.
Org. Lett.
2006,
8:
1241
<A NAME="RW19806ST-9B">9b</A>
Sonye JP.
Koide K.
Org. Lett.
2006,
8:
199
<A NAME="RW19806ST-9C">9c</A>
Shi Y.
Shi M.
Org. Lett.
2005,
7:
3057
<A NAME="RW19806ST-9D">9d</A>
Tejedor D.
Santos-Exposito A.
Gonzalez-Cruz D.
Marrero-Tellado JJ.
Garcia-Tellado F.
J. Org. Chem.
2005,
70:
1042
<A NAME="RW19806ST-9E">9e</A>
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
5672
<A NAME="RW19806ST-9F">9f</A>
Li C.
Shi M.
Org. Lett.
2003,
5:
4273
<A NAME="RW19806ST-10">10</A>
Typical Procedure.
A round-bottomed flask, equipped with a stirring bar, was charged with 2,4-pentanedione
(0.15 mmol) and acetylenic ketone (0.3 mmol) dissolved in CH2Cl2 (2 mL) followed by DMAP (0.03 mmol). The reaction was run at r.t. for the indicated
time (monitored by TLC). The reaction was concentrated under reduced pressure on a
rotary evaporator and purified by silica gel chromatography using PE-EtOAc (10:1 to
3:1).
Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 8.63 (s, 3 H), 2.64 (s, 9 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 196.7, 138.0, 131.8, 26.9 ppm. IR (KBr): ν = 1690, 1227 cm-1. HRMS (EI): m/z calcd for C12H12O3 [M]+: 204.0786; found: 204.0791.
Compound 3b: 1H NMR (300 MHz, CDCl3): δ = 8.56 (s, 3 H), 7.25-7.10 (m, 15 H), 3.31 (t, J = 7.5 Hz, 6 H), 3.03 (t, J = 7.5 Hz, 6 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 197.9, 140.8, 137.8, 131.3, 128.7, 128.6, 126.4, 40.8, 30.1 ppm. IR (KBr):
ν = 1694, 1162 cm-1. HRMS (EI): m/z calcd for C33H30O3 [M]+: 474.2195; found: 474.2192.
Compound 6: 1H NMR (300 MHz, CDCl3): δ = 8.49 (d, J = 1.5 Hz, 2 H), 8.29 (d, J = 1.5 Hz, 1 H), 7.76 (d, J = 7.6 Hz, 4 H), 7.57-7.54 (m, 2 H), 7.47-7.42 (m, 4 H), 2.63 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 195.4, 193.9, 137.4, 136.4, 135.4, 133.8, 132.2, 131.5, 129.0, 127.6, 25.8
ppm. IR (KBr): ν = 1691, 1662, 1242 cm-1. HRMS (EI): m/z calcd for C22H16O3 [M]+: 328.1099; found: 328.1092.